Раздел 5. Производство цветных металлов
Цель раздела 5:
Ознакомиться с современными технологиями при производстве цветных металлов
План раздела 5:
5.1. Металлургия меди
5.2. Металлургия никеля
5.3. Металлургия алюминия
5.4. Получение других цветных металлов
Цель подраздела 5.6:
Ознакомиться с современными технологиями цветных металлов.
План подраздела 5.6:
5.4.1. Основы хлоридных методов производства металлов
5.4.2. Производство магния
5.4.3. Производство титана
Для производства других цветных металлов - свинца, олова, цинка, вольфрама и молибдена пользуются некоторыми технологическими приемами, рассмотренными ранее в лекциях, но естественно, что схемы производства этих металлов и агрегаты для их получения имеют свои особенности.
Следует коротко остановиться на довольно распространенном хлоридном способе получения металлов, что можно сделать на примере производства таких металлов, как магний и титан, имеющих большое значение в промышленности.
5.4.1. Основы хлоридных методов производства металлов
Хлор обладает большим химическим сродством к металлам и при определенных условиях может вытеснить кислород из оксидов с образованием хлоридов. Процесс значительно облегчается в присутствии углерода, так как в этом случае кислород соединяется с углеродом. Например, применительно к двухвалентному металлу возможны следующие процессы:
1)МеО + С12 = МеС12 + l/2О2 – Q1;
2)МеО + Cl2 + С = МеС12 + СО - Q2.
При этом Q2 < Q1 (по абсолютному значению), и даже в некоторых случаях процесс, протекающий по второй реакции, экзотермичен. Следует подчеркнуть, что и реакции первого типа протекают при более низких температурах, чем аналогичные реакции восстановления оксидов углеродом. Важным обстоятельством является то, что хлориды обычно образуются в газообразном состоянии, легко уводятся из процесса, а процесс производства карбидообразующих металлов хлоридным методом в отличие от восстановления углеродом обеспечивает получение малоуглеродистого продукта. В некоторых случаях хлориды находятся в недрах земли или в соленых водоемах. Из хлоридов металлы получают восстановлением или же электролизом из расплавов.
5.4.2. Производство магния
Магний широко применяют в виде сплавов с алюминием, цинком и марганцем для изготовления деталей авиационных и автомобильных двигателей. Магниевые сплавы обладают хорошими литейными свойствами, что дает возможность получать из них сложные отливки. Сплавы легко поддаются свариванию и обработке резанием.
Основными видами сырья для получения магния являются магнезит, доломит, карналлит и бишофит. Главной составляющей магнезита является MgCO3, а доломита СаСО3×MgCO3. Карналлит - это природный хлорид магния и калия MgCl2×КСl×6Н2О. Бишофит (MgCl2×6Н2О) получается при переработке карналлита или выпаривается из воды соленых озер и морей. Наиболее распространен в настоящее время электролитический способ получения магния, при этом магний в процессе электролиза получается из вводимого в электролит хлорида MgCl2. Технология получения магния этим способом включает три стадии: получение безводного хлорида магния MgCl2, электролиз с выделением из хлорида жидкого магния, рафинирование магния.
Применяют также термические способы получения магния с использованием в качестве восстановителя С, Si или СаС2. Из них проще силикотермический способ, при котором пользуются специальными ретортами из хромоникелевой жаропрочной стали, помещаемыми в электропечь, отапливаемую газообразным топливом. В качестве сырья лучше всего брать доломит MgCO3×СаСО3, а в качестве восстановителя - кремний ферросилиция. Магний получается высокой чистоты.
5.4.3. Производство титана
Титан отличается высокой механической прочностью, коррозионной стойкостью, жаропрочностью (tпл = 1660 °С) и малой плотностью (4,51 г/см3). Его применяют как конструкционный материал в самолетостроении, а также при постройке сосудов, предназначенных для транспортирования концентрированной азотной и разбавленной серной кислот.
Применяют также диоксид ТiO2 для производства титановых белил и эмали.
Наиболее распространенным сырьем для получения титана и диоксида титана служит ильменитовый концентрат, выделяемый при обогащении титаномагнетитовых железных руд, в котором содержится, %: 40-60 TiO2, ~30FeO, ~20Fe2O3 и 5-7 пустой породы (CaO, MgO, А12О3, SiO2), причем титан в виде минерала ильменита FeO×TiO2.
Технологический процесс производства титана из ильменитового концентрата состоит из следующих основных стадий: получение титанового шлака восстановительной плавкой, получение тетрахлорида титана хлорированием титановых шлаков, получение титана (губки, порошка) восстановлением из тетрахлорида. Кроме того, зачастую проводят рафинирование полученного титана и иногда переплав для получения титана в виде слитков.
Восстановительная плавка ильменитового концентрата имеет целью перевести ТiO2 в шлак и отделить оксиды железа путем их восстановления. Плавку проводят в электродуговых печах. В, печь загружают концентрат и восстановитель (кокс, антрацит), их нагревают до ~ 1650 °С. Основной реакцией является:
FeO×TiO2 + С = Fe + TiO2 + CO.
Из восстановленного и науглероживающегося железа образуется чугун, а оксид титана переходит в шлак, который содержит 82-90% TiO2 (титановый шлак).
Получение тетрахлорида титана TiCl4 осуществляют воздействием газообразного хлора на оксид титана при температурах 700-900 °С, при этом протекает реакция:
TiO2 + 2С12 + 2С = TiCl4 + 2СО.
Исходным титаносодержащим сырьем при этом является титановый шлак.
Хлорирование осуществляют в шахтных хлораторах непрерывного действия или в солевых хлораторах.
Металлатермическое восстановление титана из тетрахлорида TiCl4 проводят магнием или натрием. Для восстановления магнием служат аппараты, представляющие собой помещенную в печь герметичную реторту высотой 2-3 м из хромо-никелевой стали. После ввода в разогретую до ~ 750 °С реторту магния в нее подают тетрахлорид титана. Восстановление титана магнием TiCl4 + 2Mg = Ti + 2MgCl2 идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800-900 °С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл восстановления длительностью 30-50 ч получают 1-4 т титана в виде губки (твердые частицы титана спекаются в пористую массу - губку). Жидкий MgCl2 из реторты периодически выпускают.
Титановая губка впитывает много MgCl2 и магния, поэтому после окончания цикла восстановления проводят вакуумную отгонку примесей. Реторту после нагрева до ~ 1000 °С и создания в ней вакуума выдерживают в течение 35-50 ч; за это время примеси испаряются. Иногда отгонку примесей из губки проводят после ее извлечения из реторты. Восстановление натрием проводят в аппаратах, схожих с применяемыми для магниетермического восстановления. В реторте после подачи TiCl4 и жидкого натрия идет реакция восстановления титана:
TiCl4 + 4Na = Ti + 4NaCl.
Температура в 800-880 °С поддерживается за счет выделяющегося при восстановлении тепла.
Полученную твердую массу, содержащую 17 % Ti и 83 % NaCl извлекают из реактора, измельчают и выщелачивают из нее NaCl водой, получая титановый порошок.
Рафинирование титана. Для получения титана высокой чистоты применяют так называемый иодидный способ, при котором используется реакция Ti + 2I2 « Til4. При температуре 100-200 °С реакция протекает в направлении образования Til4, а при температуре 1300-1400 °С - в обратном направлении.
Титановую губку (порошок) загружают в специальную реторту, помещаемую в термостат, где температура должна быть на уровне 100-200 °С, и внутри нее специальным приспособлением разбивают ампулу с йодом. Через несколько натянутых в реторте титановых проволок пропускают ток, в результате чего они накаливаются до 1300-1400 °С. Пары йода реагируют с титаном губки по реакции Ti + 2I2 ® TiI4. Полученный TiI4 разлагается на раскаленной титановой проволоке, образуя кристаллы чистого титана и освобождая йод: TiI4 ® Ti + 2I2. Пары йода вновь вступают во взаимодействие с рафинируемым титаном, а на проволоке постепенно наращивается слой кристаллизующегося чистого титана. Процесс заканчивают при толщине получаемого прутка титана 25-30 мм. Получаемый металл содержит 99,9-99,99 % Ti, в одном аппарате получают ~ 10 кг чистого титана в сутки.
Получение титановых слитков. Для получения ковкого титана в виде слитков губку переплавляют в вакуумной дуговой печи. Расходуемый (плавящийся) электрод получают прессованием губки и титановых отходов. Жидкий титан затвердевает в печи в водоохлаждаемом кристаллизаторе.