Раздел 5. Производство цветных металлов

 

Цель раздела 5:

Ознакомиться с современными технологиями при производстве цветных металлов

 

План раздела 5:

5.1. Металлургия меди

5.2. Металлургия никеля

5.3. Металлургия алюминия

5.4. Получение других цветных металлов

 

Цель подраздела 5.6:

Ознакомиться с современными технологиями цветных металлов.

 

План подраздела 5.6:

5.4.1. Основы хлоридных методов производства металлов

5.4.2. Производство магния

5.4.3. Производство титана

 

Для производства других цветных металлов - свинца, олова, цинка, вольфрама и молибдена пользуются некоторыми техно­логическими приемами, рассмотренными ранее в лекциях, но естествен­но, что схемы производства этих металлов и агрегаты для их получения имеют свои особенности.

Следует коротко остановиться на довольно распростра­ненном хлоридном способе получения металлов, что можно сделать на примере производства таких металлов, как маг­ний и титан, имеющих большое значение в промышленности.

 

5.4.1. Основы хлоридных методов производства металлов

 

Хлор обладает большим химическим сродством к металлам и при определенных условиях может вытеснить кислород из оксидов с образованием хлоридов. Процесс значительно облегчается в присутствии углерода, так как в этом случае кислород соединяется с углеродом. Например, применительно к двухвалентному металлу возможны следующие процессы:

1)МеО + С12 = МеС12 + l/2О2Q1;

2)МеО + Cl2 + С = МеС12 + СО - Q2.

При этом Q2 < Q1 (по абсолютному значению), и даже в некоторых случаях процесс, протекающий по второй реакции, экзотермичен. Следует подчеркнуть, что и реакции первого типа протекают при более низких температурах, чем анало­гичные реакции восстановления оксидов углеродом. Важным обстоятельством является то, что хлориды обычно образуют­ся в газообразном состоянии, легко уводятся из процесса, а процесс производства карбидообразующих металлов хлоридным методом в отличие от восстановления углеродом обеспе­чивает получение малоуглеродистого продукта. В некоторых случаях хлориды находятся в недрах земли или в соленых водоемах. Из хлоридов металлы получают восстановлением или же электролизом из расплавов.

 

5.4.2. Производство магния

 

Магний широко применяют в виде сплавов с алюминием, цин­ком и марганцем для изготовления деталей авиационных и автомобильных двигателей. Магниевые сплавы обладают хоро­шими литейными свойствами, что дает возможность получать из них сложные отливки. Сплавы легко поддаются свариванию и обработке резанием.

Основными видами сырья для получения магния являются магнезит, доломит, карналлит и бишофит. Главной состав­ляющей магнезита является MgCO3, а доломита СаСО3×MgCO3. Карналлит - это природный хлорид магния и калия MgCl2×КСl×2О. Бишофит (MgCl2×2О) полу­чается при переработке карналлита или выпаривается из воды соленых озер и морей. Наиболее распространен в нас­тоящее время электролитический способ получения магния, при этом магний в процессе электролиза получается из вво­димого в электролит хлорида MgCl2. Технология получения магния этим способом включает три стадии: получение без­водного хлорида магния MgCl2, электролиз с выделением из хлорида жидкого магния, рафинирование магния.

Применяют также термические способы получения магния с использованием в качестве восстановителя С, Si или СаС2. Из них проще силикотермический способ, при котором поль­зуются специальными ретортами из хромоникелевой жаропроч­ной стали, помещаемыми в электропечь, отапливаемую газо­образным топливом. В качестве сырья лучше всего брать до­ломит MgCO3×СаСО3, а в качестве восстановителя - крем­ний ферросилиция. Магний получается высокой чистоты.

 

5.4.3. Производство титана

 

Титан отличается высокой механической прочностью, корро­зионной стойкостью, жаропрочностью (tпл = 1660 °С) и малой плотностью (4,51 г/см3). Его применяют как конст­рукционный материал в самолетостроении, а также при постройке сосудов, предназначенных для транспортирования концентрированной азотной и разбавленной серной кислот.

Применяют также диоксид ТiO2 для производства титано­вых белил и эмали.

Наиболее распространенным сырьем для получения титана и диоксида титана служит ильменитовый концентрат, выде­ляемый при обогащении титаномагнетитовых железных руд, в котором содержится, %: 40-60 TiO2, ~30FeO, ~20Fe2O3 и 5-7 пустой породы (CaO, MgO, А12О3, SiO2), причем титан в виде минерала    ильменита FeO×TiO2.

Технологический процесс производства титана из ильменитового концентрата состоит из следующих основных ста­дий: получение титанового шлака восстановительной плав­кой, получение тетрахлорида титана хлорированием титано­вых шлаков, получение титана (губки, порошка) восстанов­лением из тетрахлорида. Кроме того, зачастую проводят рафинирование полученного титана и иногда переплав для получения титана в виде слитков.

Восстановительная плавка ильменитового концентрата имеет целью перевести ТiO2 в шлак и отделить оксиды желе­за путем их восстановления. Плавку проводят в электро­дуговых печах. В, печь загружают концентрат и восстанови­тель (кокс, антрацит), их нагревают до ~ 1650 °С. Основ­ной реакцией является:

 

FeO×TiO2 + С = Fe + TiO2 + CO.

 

Из восстановленного и науглероживающегося железа образу­ется чугун, а оксид титана переходит в шлак, который содержит 82-90% TiO2 (титановый шлак).

Получение тетрахлорида титана TiCl4 осуществляют воз­действием газообразного хлора на оксид титана при температурах 700-900 °С, при этом протекает реакция:

 

TiO2 + 2С12 + 2С = TiCl4 + 2СО.

 

Исходным титаносодержащим сырьем при этом является титановый шлак.

Хлорирование осуществляют в шахтных хлораторах непре­рывного действия или в солевых хлораторах.

Металлатермическое восстановление титана из тетрахлорида TiCl4 проводят магнием или натрием. Для восстановле­ния магнием служат аппараты, представляющие собой помещенную в печь герметичную реторту высотой 2-3 м из хромо-никелевой стали. После ввода в разогретую до ~ 750 °С реторту магния в нее подают тетрахлорид тита­на. Восстановление титана магнием TiCl4 + 2Mg = Ti + 2MgCl2 идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800-900 °С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл вос­становления длительностью 30-50 ч получают 1-4 т титана в виде губки (твердые частицы титана спекаются в пористую массу - губку). Жидкий MgCl2 из реторты периодически вы­пускают.

Титановая губка впитывает много MgCl2 и магния, поэто­му после окончания цикла восстановления проводят вакуум­ную отгонку примесей. Реторту после нагрева до ~ 1000 °С и создания в ней вакуума выдерживают в течение 35-50 ч; за   это  время  примеси  испаряются.  Иногда   отгонку  примесей из губки проводят после ее извлечения из реторты. Восста­новление натрием проводят в аппаратах, схожих с применя­емыми для магниетермического восстановления. В реторте после подачи TiCl4 и жидкого натрия идет реакция восста­новления титана:

 

TiCl4 + 4Na = Ti + 4NaCl.

 

Температура в 800-880 °С поддерживается за счет выделяющегося при вос­становлении тепла.

Полученную твердую массу, содержащую 17 % Ti и 83 % NaCl извлекают из реактора, измельчают и выщелачивают из нее NaCl водой, получая титановый порошок.

Рафинирование титана. Для получения титана высокой чистоты применяют так называемый иодидный способ, при котором используется реакция Ti + 2I2 « Til4. При тем­пературе 100-200 °С реакция протекает в направлении обра­зования Til4, а при температуре 1300-1400 °С - в обратном направлении.

Титановую губку (порошок) загружают в специальную ре­торту, помещаемую в термостат, где температура должна быть на уровне 100-200 °С, и внутри нее специальным при­способлением разбивают ампулу с йодом. Через несколько натянутых в реторте титановых проволок пропускают ток, в результате чего они накаливаются до 1300-1400 °С. Пары йода реагируют с титаном губки по реакции Ti + 2I2 ® TiI4. Полученный TiI4 разлагается на раскален­ной титановой проволоке, образуя кристаллы чистого титана и освобождая йод: TiI4 ® Ti + 2I2. Пары йода вновь вступают во взаимодействие с рафинируемым титаном, а на проволоке постепенно наращивается слой кристаллизующегося чистого титана. Процесс заканчивают при толщине получае­мого прутка титана 25-30 мм. Получаемый металл содержит 99,9-99,99 % Ti, в одном аппарате получают ~ 10 кг чисто­го титана в сутки.

Получение титановых слитков. Для получения ковкого титана в виде слитков губку переплавляют в вакуумной ду­говой печи. Расходуемый (плавящийся) электрод получают прессованием губки и титановых отходов. Жидкий титан затвердевает в печи в водоохлаждаемом кристаллизаторе.