Раздел 5. Производство цветных металлов
Цель раздела 5:
Ознакомиться с современными технологиями при производстве цветных металлов
План раздела 5:
5.1. Металлургия меди
5.2. Металлургия никеля
5.3. Металлургия алюминия
5.4. Получение других цветных металлов
Цель подраздела 5.3:
Ознакомиться с современными технологиями и оборудованием при производстве алюминия.
План подраздела 5.3:
5.3.1. Свойства алюминия и его применение
5.3.2. Сырые материалы
5.3.3. Производство глинозема
– Способ Байера;
– Способ спекания.
5.3.4. Электролитическое получение алюминия
5.3.5. Рафинирование алюминия
5.3.1. Свойства алюминия и его применение
Алюминий обладает многими ценными свойствами: небольшой плотностью - около 2,7 г/см3, высокой теплопроводностью - около 300 Вт/(м×К) и высокой электропроводностью 13,8×107 Ом/м, хорошей пластичностью и достаточной механической прочностью.
Алюминий образует сплавы со многими элементами. В сплавах алюминий сохраняет свои свойства. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.
Сродство алюминия к кислороду очень большое. При его окислении выделяется большое количество тепла (~ 1670000Дж/моль). Тонкоизмельченный алюминий при: нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищается от окисления этой пленкой и в расплавленном состоянии.
Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.
Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетике и электронике. Многие части искусственных спутников нашей планеты и космических кораблей изготовлены из алюминия и его сплавов.
Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).
По общему производству металла в мире алюминий занимает второе место! после железа.
5.3.2. Сырые материалы
Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд А12О3, гиббсит А12О3×3Н2О, бемит А12О3×Н2О, кианит 3А12О3×2SiО2, нефелин (Na, K)2О×А12О3×2SiО2, каолинит А12О3×2SiО2×2H2О и другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.
5.3.3. Производство глинозема
Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (А12О3) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.
За рубежом практически весь глинозем получают из бокситов в основном способом Байера (К.И. Байер - австрийский инженер, работавший в России), на отечественных заводах глинозем получают из бокситов способом Байера и из бокситов и нефелинов способом спекания. Оба эти способа относятся к щелочным методам выделения глинозема из руд. Способ Байера экономически целесообразно использовать для переработки бокситов с небольшим содержанием SiO2 (с кремниевым модулем Al2O3/SiO2 более 5-7), поскольку при росте количества SiO2 все больше А12O3 и используемой в процессе щелочи теряются из-за образования химического соединения Na2О×А12О3×2SiО2×2Н2О.
Для переработки бокситов с кремниевым модулем менее 5-7 более экономичным является способ спекания. В связи с истощением богатых глиноземом месторождений боксита и вовлечением в производство более бедных бокситов, доля способа Байера в производстве глинозема снижается и возрастает доля способа спекания.
– Способ Байера
Способ Байера - способ выделения глинозема из боксита - основан на выщелачивании, цель которого растворить содержащийся в боксите оксид алюминия А12О3, избежав перевода в раствор остальных составляющих боксита (SiО2, Fe2О3 и др.). В основе способа лежит обратимая химическая реакция:
А12О3×п Н2О + 2NaOH = Na2O×Al2O3 + (n + l)H2О.
При протекании реакции вправо глинозем в виде алюмината натрия переходит в раствор, а при обратном течении реакции образующийся гидратированный А12О3 выпадает в осадок. Основные операции по способу Байера:
1. Подготовка боксита к выщелачиванию. Боксит дробят и размалывают до фракций размером 0,05-0,15 мм в среде добавляемой щелочи и оборотного раствора щелочи NaOH, добавляют также немного извести, активизирующей выщелачивание.
2.Выщелачивание. Полученную при помоле пульпу направляют на выщелачивание. Для полного протекания приведенной выше реакции вправо (образования алюмината натрия) необходимы щелочная среда, высокое давление (~ 3 МПа), нагрев пульпы до 100-240 °С (в зависимости от сорта боксита) и ее длительное (около 2 ч) перемешивание. Такие условия обеспечиваются в автоклавах - сосудах, работающих под давлением. Применяемые автоклавы представляют собой (рис.2) стальной цилиндрический сосуд диаметром 1,6-2,5 и высотой 13,5-17,5 м. Давление в автоклаве 2,5-3,3 МПа, пульпу подают сверху, снизу через патрубок 2 с барботером 3 - пар, который нагревает и перемешивает ее. Из автоклава пульпа выдавливается через трубу 1. Пульпу обычно пропускают через батарею из 6-10 последовательно установленных автоклавов, где в течение ~ 2 ч содержащийся в пульпе в виде А12О3×Н20, А12О3×3Н20 и А12О3 глинозем реагирует со щелочью (реакция приведена выше), переходя в NaaO×Al2О3.
3. Разделение алюминатного раствора и шлама после разбавления пульпы водой производят в сгустителях (отстойниках) - сосудах диаметром 15-50 м, на дне которых оседает шлам, а через верх сливается: отстоявшийся алюминатный раствор. Его дополнительно пропускают через фильтры и направляют на следующую операцию - декомпозицию. Получаемый красный шлам (окраску ему придают частицы Fe203) идет в отвал, шлам содержит, %: Аl2Оэ 12-18, Si02 6-11, Fe203 44-50, CaO 8-13.
4. Разложение алюминатного раствора, называемое также декомпозицией или выкручиванием проводят с целью перевести алюминий из -раствора в осадок в виде А12О3×3Н2О, для чего обеспечивают течение приведенной выше реакции выщелачивания влево, в сторону образования А12О3×3Н2О. Чтобы указанная реакция шла влево, необходимо понизить давление (до атмосферного), разбавить и охладить раствор, ввести в него затравки (мелкие кристаллы гидрооксида алюминия) и пульпу для получения достаточно крупных кристаллов А12О3×3Н2О перемешивать в течение 50-90 ч.
5. Отделение кристаллов
гидрооксида алюминия от
раствора и классификация кристаллов по крупности. После
декомпозиции пульпа поступает в сгустители, где гидрооксид отделяют от
раствора. Полученный гидрооксид в гидросепараторах разделяют на фракцию с
размером частиц 40-100 мкм и мелкую
фракцию (размером < 40 мкм), которую используют в качестве затравки
при декомпозиции. Крупную фракцию промывают, фильтруют и направляют на
кальцинацию
6. Кальцинацию или обезвоживание гидрооксида алюминия осуществляют в футерованных шамотом трубчатых вращающихся печах диаметром 2,5-5 и длиной 35-110 м, отапливаемых природным газом или мазутом. Гидрооксид медленно перемещается вдоль вращающегося барабана навстречу потоку горячих газов, температура которых повышается от 200-300 °С в месте загрузки до ~1200°С вблизи горелки у разгрузочного торца барабана. При нагреве гидрооксида идет реакция: А12О3×3Н2О = А12О3э + 3Н20, заканчивающаяся при 900 °С. Продуктом является глинозем Al203 (порошок белого цвета).
Извлечение глинозема при использовании описанного способа Байера составляет около 87 %. На производство 1 т глинозема расходуют 2,0-2,5 т боксита, 70-90 кг NaOH, около 120 кг извести, 7-9 т пара, 160-180 кг мазута (в пересчете на условное топливо) и около 280 кВт×ч электроэнергии.
– Способ спекания
Способ применяют для получения глинозема из высококремнистых (> 6-8 % Si02) бокситов с кремниевым модулем менее 5-7 и из нефелиновых руд; способ пригоден также для переработки любого алюминиевого сырья.
Сущность способа заключается в получении твердых алюминатов путем их спекания при высоких (~ 1300 °С) температурах и в последующем выщелачивании полученного спека.
Получение глинозема из бокситов. Основные стадии этого процесса следующие.
Подготовка к спеканию. Боксит и известняк после дробления измельчают в мельницах в среде оборотного содового раствора с добавкой свежей соды Na2CO3, получая пульпу с влажностью 40%.
Спекание ведут в отапливаемых трубчатых вращающихся печах диаметром до 5 и длиной до 185 м. Температура в печи повышается от 200-300 °С в месте подачи пульпы до ~ 1300 °С в разгрузочном конце у горелки. При нагреве оксид алюминия превращается в водорастворимый алюминат натрия:
Al2О3 + Na2CО3 = Na2О×Al2О3 + CO,
а кремнезем связывается в малорастворимые силикаты: SiО2 + 2СаО = 2СаО×SiО2. С содой реагирует также Fe2О3 боксита, образуя Na2О×Fe2О3. Эти химические соединения спекаются, образуя частично оплавленные куски- спек.
После обжиговой печи спек охлаждают в холодильниках, дробят до крупности 6-8 мм и направляют на выщелачивание.
Выщелачивание ведут горячей водой проточным методом в аппаратах различной конструкции: диффузорах (цилиндрических сосудах, куда порциями загружают и выгружают спек), в конвейерных выщелачивателях и др. Наиболее совершенными являются трубчатые выщелачиватели непрерывного действия.
Карбонизацию проводят с целью выделения алюминия в осадок А12О3×3Н2О (карбонизация заменяет декомпозицию в способе Байера). Карбонизацию осуществляют в сосудах цилиндрической или дилиндроконической формы объемом до 800 м3 пропусканием через раствор отходящих газов спекательных печей, содержащих 10-14% СО2. Газы перемешивают раствор, а СО2 разлагает алюминат натрия:
Na2О×Al2О3 + CO2 + 3Н2О = А12О3 ×3H2О + Na2CO3
и гидроксид алюминия выпадает в осадок.
Далее проводят те же технологические операции, что и в способе Байера: отделение А12О3×3Н2О от раствора и кальцинацию- обезвоживание гидроксида алюминия прокаливанием в трубчатых печах с получением глинозема А12О3.
Спекание производят в отапливаемых трубчатых вращающихся печах диаметром 3-5 и длиной до 190 м; пульпу заливают в печь со стороны выхода газов, где температура равна 200-300 °С, а в разгрузочном конце онна достигает 1300 °С. В процессе нагрева нефелин взаимодействует с известняком:
(Na, K)2О×А12О3×2SiО2 + 4CaCО3 = (Na, K)2О×А12О3 + 2(2СаО×SiО2) + 4СО2.
В результате этой реакции входящие в состав нефелина Na2О и К2О обеспечивают перевод глинозема в водорастворимые алюминаты, а СаО связывает кремнезем в малорастворимый двухкальциевый силикат. Получаемый спек охлаждают в холодильниках и дробят.
Выщелачивание нефелинового спека совмещают с его размолом и проводят в шаровых или стержневых мельницах в среде горячей воды со щелочным раствором, получаемым после карбонизации. В процессе выщелачивания алюминаты растворяются в воде и остается известково-кремнистый шлам (называемый белитовым), который идет на производство цемента.
Обескремнивание алюминатного раствора проходит в две стадии. Первую проводят в автоклавах в течение 1,5-2 ч при температуре 150-170 °С; при этом в осадок выпадают содержащие кремнезем алюмосиликаты, этот осадок (белый шлам) идет в шихту для спекания.
Алюминатный раствор после первой стадии обескремнивания делят на две части. Одну часть далее подвергают карбонизации (так, как при переработке бокситов) с последующей декомпозицией, после чего получают в осадке гидрооксид алюмния и содощелочной раствор, идущий на выщелачивание спека.
Вторую часть алюминатного раствора дополнительно обескремнивают в мешалках с добавкой извести при ~ 95 °С в течение 1,5-2 ч. При этом в осадок выпадает известково-силикатный шлам и обеспечивается глубокое обескремнивание алюминатного раствора. Затем этот раствор подвергают кальцинации, получая в осадке гидроксид алюминия и глубоко обескремненный содовый раствор, из которого далее в содовом цехе получают поташ (К2СО3) и кальцинированную соду (Na2CО3); глубокое обескремнивание необходимо для получения этих товарных продуктов.
Кальцинация. Гидрооксид алюминия после обеих ветвей переработки алюминатного раствора подвергают промывке и фильтрации и затем направляют на кальцинацию (обезвоживание), которую проводят так же, как в способе Байера, получая глинозем.
Примерный расход материалов на получение 1 т глинозема из нефелинов, т: нефелина 4; известняка 7; извести 0,1; условного топлива 1,5; электроэнергии ~ 1000 кВт×ч. При этом получают около 1 т содопродуктов и до 10 т цемента.
5.3.4. Электролитическое получение алюминия
Алюминий получают путем электролиза глинозема, растворенного в расплавленном электролите, основным компонентом которого является криолит. В чистом криолите Na3AlF6(3NaF×A1F3) отношение NaF:AlF3 равно 3, для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6-2,8, поэтому к криолиту добавляют фтористый алюминий A1F3. Кроме того, для снижения температуры плавления в электролит добавляют немного CaF2, MgF2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих пределах, %: Na3AlF6 75-90; AlF3 5-12; MgF2 2-5; CaF2 2-4; Al2О3 2-10. При повышении содержания А12О3 более 10% резко повышается тугоплавкость электролита, при содержании менее 1,3% нарушается нормальный режим электролиза.
5.3.5. Рафинирование алюминия
Алюминий, извлекаемый из электролизных ванн, называют алюминием-сырцом. Он содержит металлические (Fe, Si, Cu, Zn и др.) и неметаллические примеси, а также газы (водород, кислород, азот, оксиды углерода, сернистый газ). Неметаллические примеси- это механически увлеченные частицы глинозема, электролит, частицы футеровки и др.
Для очистки от механически захваченных примесей, растворенных газов, а также от Na, Ca и Mg алюминий подвергают хлорированию.
Далее алюминий заливают в электрические печи-миксеры или в отражательные печи, где в течение 30-45 мин происходит его остаивание. Цель этой операции - дополнительное очищение от неметаллических и газовых включений и усреднение состава путем смешения алюминия из разных ванн. Затем алюминий разливают либо в чушки на конвейерных разливочных машинах, либо на установках непрерывного литья в слитки для прокатки или волочения. Таким образом получают алюминий чистотой не менее 99,8% А1.
Алюминий более высокой степени чистоты в промышленном масштабе получают путем последующего электролитического рафинирования жидкого алюминия по так называемому трехслойному методу.