Лекция 3.2

Комплексный метод оценки уровня качества продукции

Для оценки технического уровня сложной продукции приходиться учитывать большое количество единичных показателей, что затрудняет принятие решения об уровне качества различной оцениваемой продукции. В этих случаях обоснование рекомендаций по принимаемым решениям представляется одним числом, которое получается в результате объединения выбранных единичных показателей в один комплексный (обобщенный) показатель, что определяет комплексный метод оценки уровня качества продукции.

Обобщенный показатель представляет собой функцию, зависящую от единичных показателей, которые характеризуют однородную группу свойств. К таким группам показателей относятся, например, показатели надежности, эстетичности, безопасности и т.д.

Для оценки технического уровня сложной продукции приходиться учитывать большое количество единичных показателей, что затрудняет принятие решения об уровне качества различной оцениваемой продукции. В этих случаях обоснование рекомендаций по принимаемым решениям представляется одним числом, которое получается в результате объединения выбранных единичных показателей в один комплексный (обобщенный) показатель, что определяет комплексный метод оценки уровня качества продукции.

Обобщенный показатель представляет собой функцию, зависящую от единичных показателей, которые характеризуют однородную группу свойств. К таким группам показателей относятся, например, показатели надежности, эстетичности, безопасности и т.д.

Комплексную оценку по средневзвешенным показателям качества продукции применяют в тех случаях, когда затруднительно или невозможно определить главный, обобщенный показатель качества и его функциональную зависимость от исходных показателей качества. Обычно используют средний взвешенный арифметический.

Средний взвешенный арифметический показатель качества вычисляют по формулам:

$$U = \sum_{i=1}^{n} m_{iU} \cdot P_{i},$$

$$U^{(1)} = \sum_{i=1}^{n} m_{iU} \cdot K_{i}.$$
(3.2.1)

$$U^{(1)} = \sum_{i=1} m_{iU} \cdot K_i. \tag{3.2.2}$$

где Рі – значение і-го показателя качества продукции;

Кі – удельный і-й показатель качества;

miU – параметр весомости i-го показателя, входящего в средний взвешенный арифметический показатель;

miV – параметр весомости i-го показателя, входящего в средний взвешенный геометрический показатель;

n – число показателей качества продукции.

Итак, уровень качества Ук или технический уровень Ут машиностроительных изделий и машин в частности, кроме как по формуле, может быть оценен так:

$$Y_m = Y_{\kappa U} = U/U_{\delta a3} = U^{(1)}/U_{\delta a3}^{(1)}$$
(3.2.3)

Параметры (коэффициенты) весомости могут быть как размерными, так и безразмерными. В случае принятия условия, что сумма всех параметров весомости равна единице, т.е.:

$$\sum_{i=1}^{n} m_i$$
=1

(3.2.4)

Пример. Комплексная оценка уровня качества устройства загрузочного труб-сушилок по среднему взвешенному арифметическому показателю. Коэффициенты весомости определяем экспертным методом.

Экспе	птцаа	rην	/nna
JKUILE	итая	ıμν	/1111a

ФИО эксперта	Возраст, лет	Должность	Адрес, телефон
1 Нурпеисова М.А.	28	Эксперт-оценщик	ул. Космонавтов 149-16, 510419
2 Макашов Б.А.	35	Технолог	ул. Н. Абдирова 8-22
3 Мельник К.А.	30	Конструктор	ул. Штурманская 1/5-70, 422805
4 Горин А.Н.	46	Инженер-эксперт	ул. Ленина 56-9
5 Петров Л.К.	34	Механик	ул. Мира 6-18

Экспертные оценки

Наименование показателя	Э1	Э2	Э3	Э4	Э5	Ранг
1 Влажность исходного продукта, %, не более						
мелкого концентрата кл.0-13 мм	0,4	0,3	0,2	0,3	0,25	5
флотоконцентрата кл.0-0,5 мм	0,8	0,84	0,7	0,5	0,7	4
2 Удельный возврат отработанного масла, кг/тыс·ч,						
не менее	1	1	0,9	1	0,9	1
3 Номинальная мощность двигателей, кВт, не						
более	0,5	0,8	0,8	0,7	0,5	3
4 Удельный расход масла, кг/тыс·ч, не более	0,9	0,8	0,96	0,95	0,85	2

Переход от балла соответствующих отдельным показателям к коэффициентам весомости осуществляется по формуле:

$$m_i = \frac{a_i}{\sum_{i=1}^n a_i},$$
(3.2.5)

где mi – коэффициент весомости;

аі – наивысшая оценка і-го показателя;

n – количество показателей, которые могут быть учтены при оценке качества изделия.

Данные для расчета по среднему взвешенному арифметическому показателю.

Наименование показателя качества	Величина показателя Р _і	Величина базового показателя Р _{іб}	Значение коэффициента весомости m _i
1 Влажность исходного продукта, %, не			
более			
мелкого концентрата кл.0-13 мм	22	22	0,27
флотоконцентрата кл.0-0,5 мм	30	30	0,23
2 Удельный возврат отработанного			
масла, кг/тыс ч, не менее	10,8	3,75	0,21
3 Номинальная мощность двигателей,			
кВт, не более	17,6	22,5	0,24
4 Удельный расход масла, кг/тыс ч, не			
более	12,5	12,5	0,21

По формулам (3.2.2, 3.2.3) вычисляем средний взвешенный арифметический показатель качества для оцениваемого и базового образца:

```
U = 0,27•22+0,23•30+0,21•10,8+0,24•17,6+0,21•12,5 = 35,36
U6a3 = 0,27•22+0,23•30+0,21•3,75+0,24•22,5+0,21•12,5 = 16,9
```

По формуле (3) находим уровень качества устройства загрузочного труб-сушилок:

$$y_{K} = 35,33/21,64 = 1,63$$

Полученное значение говорит о том, что уровень качества устройства превышает базовый в 1,63 раза.