Дисциплина «Нетрадиционные и возобновляемые источники энергии» для специальности «Теплоэнергетика»

Дисциплина «Проектирование и эксплуатация установок возобновляемой энергетики»

для специальности «Электроэнергетика»

Факультет энергетики, автоматики и телекоммуникации Кафедра «Энергетические системы»

Калытка Валерий Александрович

Доктор PhD; ассоциированный профессор (доцент); доцент кафедры «Энергетические системы»

Лекция № 5. Солнечная энергетика. Основные вопросы и методы СТЭ и СЭЭ

Солнечная энергетика

- Солнечная энергетика отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования солнечного излучения или солнечной радиации для получения электрической, тепловой или других видов энергии и использования их в народном хозяйстве.
- Солнечное излучение (СИ) это процесс переноса энергии при распределении электромагнитных волн в прозрачной среде. По квантовой теории электромагнитные волны — это поток элементарных частиц или фотонов с нулевой массой покоя, движущихся в вакууме со скоростью света.
- Источник солнечного излучения Солнце излучает в окружающее пространство поток мощности, эквивалентный 4 · 10²³ кВт.
- Земля находится от Солнца на расстоянии примерно 150 млн км. Площадь поверхности Земли, облучаемой Солнцем, составляет около 500 · 10⁶ км². Поток солнечной радиации, достигающей Земли, по разным оценкам составляет (0,85—1,2) · 10¹⁴ кВт, что значительно превышает ресурсы всех других возобновляемых источников энергии.

Солнечная энергетика

- Суммарное СИ, достигающее поверхности Земли, $R_{\rm q}$ обычно состоит из трех составляющих:
 - R_{пр} прямое СИ, поступающее от Солнца на приемную площадку в виде параллельных лучей;
 - R_д диффузное, или рассеянное молекулами атмосферных газов и аэрозолей СИ;

 - $R_{\text{отр}}$ отраженная земной поверхностью доля СИ. При этом в течение как коротких (минуты, часы), так и длительных (сутки, недели) интервалов времени в данной точке Земли может отсутствовать полностью или частично составляющая $R_{\text{пр}}$. Наконец, в ночные часы отсутствует и R_{S} в целом.
- Это означает, что **солнечная энергетическая установка** (СЭУ) на Земле имеет нулевую гарантированную мощность при использовании только СИ без сочетания с другими источниками энергии. Кроме того, СИ достигает своего максимума в летний период, когда в России обычно происходит закономерное уменьшение потребления электроэнергии. Соответственно, максимум зимнего потребления энергии в стране приходится на период минимального прихода СИ.

Солнечная энергетика

- Поток СИ на Земле существенно меняется, достигая максимума в 2200 (кВт · ч)/(м² · год) для северо-запада США, запада Южной Америки, части юга и севера Африки, Саудовской Аравии и Центральной части Австралии. Россия находится в зоне, где поток СИ меняется в пределах от 800 до 1400 (кВт · ч)/(м² · год).
- Продолжительность солнечного сияния в России находится в пределах от 1700 до 2000 ч/год и несколько более. Максимум указанных значений на Земле составляет более 3600 ч/год. За год на всю территорию России поступает солнечной энергии больше, чем энергия от всех российских ресурсов нефти, газа, угля и урана.
- В то же время в мире уже сегодня солнечная энергетика весьма интенсивно развивается и занимает заметное место в топливно-энергетическом комплексе ряда стран, например в Германии. В этой стране, как и в ряде других развитых и развивающихся стран, принят ряд законов на государственном уровне, которые дают существенную поддержку развитию нетрадиционных возобновляемых источников энергии (НВИЭ) и, в частности, солнечной энергетике. Без принятия указанных законодательных актов использование НВИЭ было бы практически невозможно, особенно на начальных этапах его становления.

Классификация солнечных энергетических установок

- По виду преобразования солнечной энергии в другие виды энергии — тепло или электричество;
- По концентрированию энергии с концентраторами и без концентраторов;
- По технической сложности простые (нагрев воды, сушилки, нагревательные печи, опреснители и т.п.) и сложные.
- Сложные СЭУ разделить на два подвида.
 - Первый базируется в основном на системе преобразования СИ в тепло, которое далее чаще всего используется в обычных схемах тепловых электростанций. К ним относятся: башенные СЭС, солнечные пруды, СЭУ с параболоцилиндрическими концентраторами, а также солнечные коллекторы, в которых происходит нагрев воды с помощью СИ.
 - Второй подвид СЭУ базируется на прямом преобразовании СИ в электроэнергию с помощью солнечных фотоэлектрических установок (СФЭУ).

Солнечные коллекторы

- Солнечные коллекторы (СК) это технические устройства, предназначенные для прямого преобразования СИ в тепловую энергию в системах теплоснабжения (СТС) для нагрева воздуха, воды или других жидкостей. Системы теплоснабжения обычно принято разделять на пассивные и активные.
- Самыми простыми и дешевыми являются пассивные СТС, которые для сбора и распределения солнечной энергии используют специальным образом сконструированные архитектурные или строительные элементы здания или сооружения и не требуют дополнительного оборудования.
- В настоящее время в мире все большее распространение получают активные СТС со специально установленным оборудованием для сбора, хранения и распространения СИ, которые по сравнению с пассивными СТС позволяют значительно повысить эффективность использования СИ, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.

Солнечные коллекторы

- Солнечные коллекторы классифицируются по следующим признакам:
 - по назначению для горячего водоснабжения, отопления, теплохладоснабжения;
 - по виду используемого теплоносителя жидкостные и воздушные;
 - по продолжительности работы сезонные и круглогодичные;
 - по техническому решению одно-, двух- и многоконтурные.
 - Кроме того, все СТС делятся на две группы: установки, работающие по разомкнутой или прямоточной схеме (рис. 17.13), и установки, работающие по замкнутой схеме (рис. 17.14).

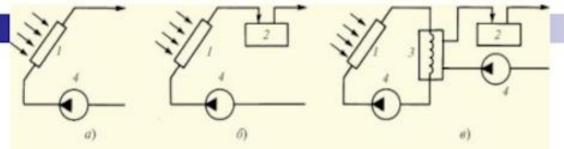


Рис. 17.13. Принципиальные схемы прямоточных систем: a — без аккумулятора; δ — с аккумулятором; ϵ — с аккумулятором и теплообменником; l — солнечный коллектор; 2 — аккумулятор; 3 — теплообменник; 4 — насос

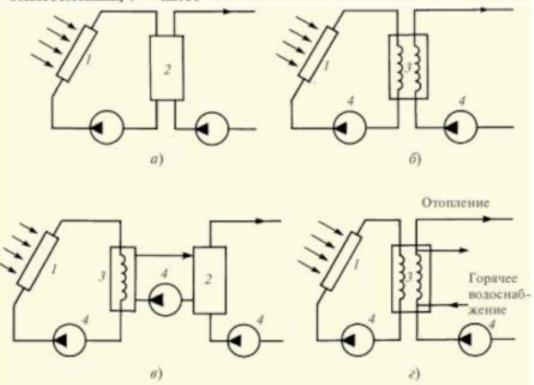
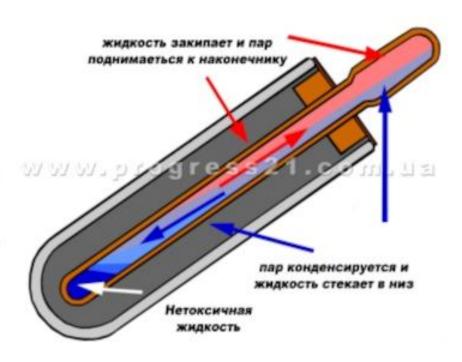


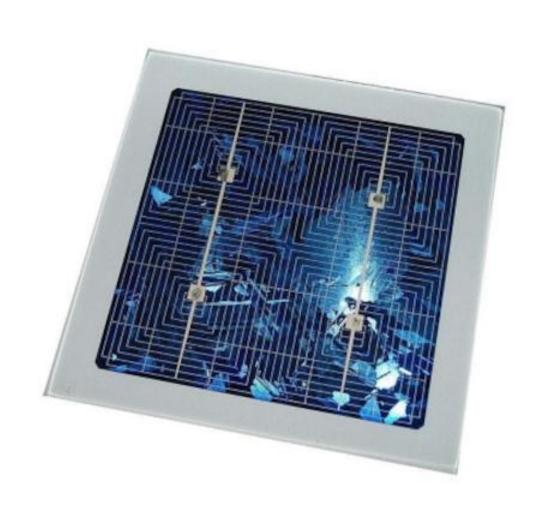

Рис. 17.14. Принципиальные схемы замкнутых систем: a — с аккумулятором; b — с теплообменником; b — с теплообменником и аккумулятором для нескольких систем теплоснабжения; I — солнечный коллектор; b — аккумулятор; b — теплообменник; b — насос

Солнечные коллекторы:


а) обычный плоский

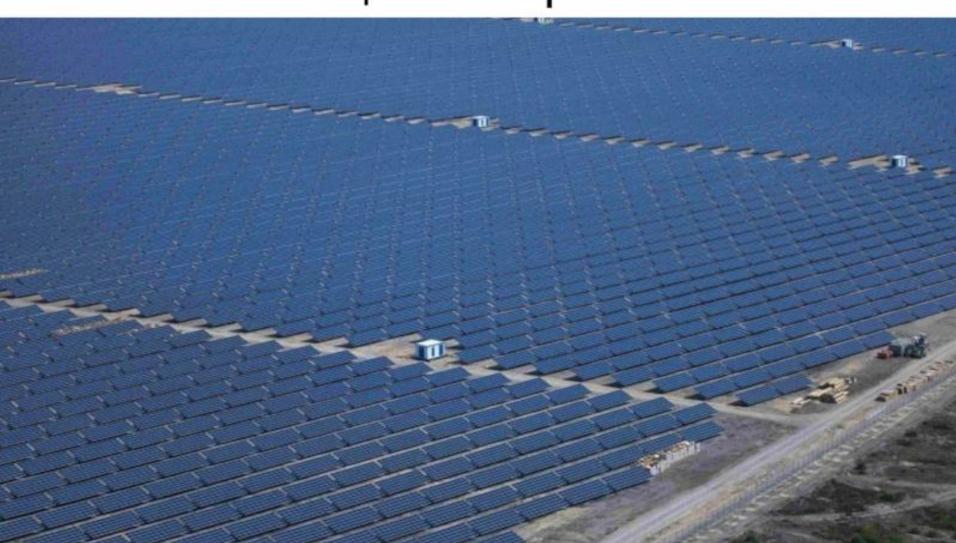
Солнечные коллекторы:

б) вакуумный плоский

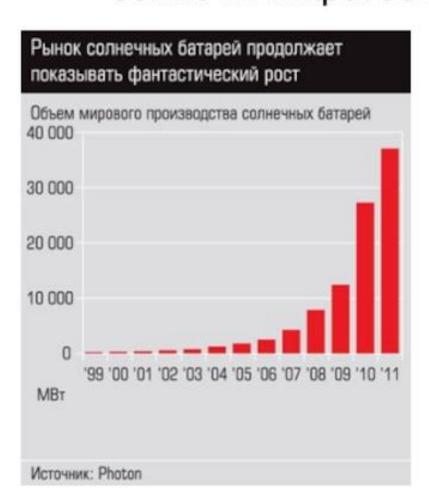

Солнечная башня (солнечная тепловая электростанция)

Солнечная фотоэнергетика

- фотоэлемент электронный прибор, который преобразует энергию фотонов в электрическую энергию.
- В настоящее время солнечные фотоэлектрические установки находят все более широкое применение как источники энергии для средних и малых автономных потребителей, а иногда и для больших солнечных электростанций, работающих в энергосистемах параллельно с традиционными ТЭС, ГЭС и АЭС. Конструктивно СФЭУ обычно состоит из солнечных батарей в виде плоских прямоугольных поверхностей.
- За последние десятилетия фотоэнергетика сделала очень большие шаги в решении двух основных проблем: повышении КПД СФЭУ и снижении стоимости их производства.
- Наибольшее распространение получили СФЭУ на основе кремния трех видов: монокристаллического, поликристаллического и аморфного. Сегодня исследуются одно-, двух- и трехслойные фотоэлементы.
- Наконец, в последние годы появился весьма перспективный конкурент для кремния в СФЭУ — арсенид галлия. Установки на его основе даже в однослойном исполнении имеют КПД до 30 % при гораздо более слабой зависимости его КПД от температуры.

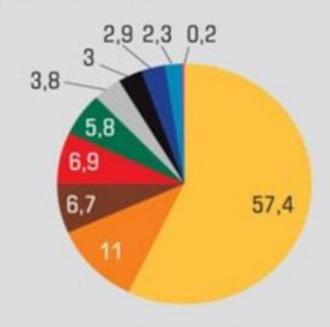

Солнечный фотоэлемент

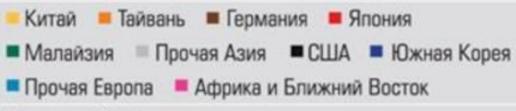
Солнечная батарея (фотоэлектрический модуль)


Солнечная фотоэлектирическая станция в Германии

Крупнейшие солнечные фотоэлектростанции мира

Пиковая мощность	Местонахождение	Описание	МВтч * год
247 MBr	Агуа-Кышситс, Аризона, США		
213 МВт	Чаратка, Гуджарат, Индия		
200 MBr	Голмуд, Китай		317 200
100 MBr	Перово, Крым, Украина	440 000 солначных модулай	132 500 🐣
97 MBr	Сарниц, Канада	более 1 000 000 солнечных модулей	120 000
84,7 MBt	Оберсвальде, Германтя	317 880 солиечных модулей	82 000
84.2 MBr	Монтальто-ди-Кастро, Италия		
80.7 MBr	Финотореальце, Гормания		
80 MBt	Охотниково, Крым, Украина	Зо́0 000 солнечных модулей	100 000 🥳
73 MBr	Лопоури, Тапланд	5/10/000 солиечных модулей	105 512
46.4 МВт	Амарележа, Португалия	более 262 000 солиечиных модулей	
43 MB1	Староказачье, Украина	185 952 солначных модулай	
34 МВт	Ариело, Испапия	172 000 солиечных модулей	49 936
33 MBt	Кторбан, Франция	145 000 солиечных модулей	43 500
31.55 MBT	Митяево, Крым, Украниа	134 760 солиечных модулей	40 000 1/1
11 MBT	Серна, Поргугация	52 000 солночных модулей	
7,5 MBt	Родпиково, Крым, Украппа	32 600 соппечных модулей	9 683


Суммарные мощности фотоэлектрических станций, МВт, 2010 год, и производство солнечных фотоэлектрических модулей



No	Страна	
Весь мир -		39778
1	Германия	17320
2	Испания	3892
3	кипопК	3617
4	Италия	3502
5	CIIIA	2519
6	Чехия	1953
7	Франция	1025
8	Китай	893
9	Бельгия	803
10	Ю. Корея	573
11	Австралия	504

Китай является абсолютным лидером производства солнечных батарей

Доля мирового рынка, 2011 г. (%)

Источник: Photon

Доля отдельных стран на мировом рынке производства солнечных батарей

Ресурсы солнечной энергии в России

Используемая литература

- Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. М.:
- Лаврус В.С. «Источники энергии» К.: 1997г
- Журнал «Энергосбережение» №7/2007
- Концепция проекта Российской программы развития возобновляемых источников энергии www.energoinform.org.
- Антропов П.Я. Топливно-энергетический потенциал Земли. М., 1974