

— НАО "Карагандинский технический университет им.Абылкаса Сагинова"

Кафедра АПП им. проф. Бырьки В. Ф.

Дисциплина: "Интеллектуальные средства сбора информации"

для студентов образовательной программы 6В07102» – Встроенные цифровые системы управления

Раздел №4 Тема:"Архитектура интеллектуального сенсорного узла"

Цель: показать объединение аппаратных и программных компонентов в единую системы.

Лектор: ст. преп. каф. АПП Лисицын Дмитрий Владимирович

План

- 1. Общая структура интеллектуального сенсорного узла.
- 2. Энергопотребление и энергосбережение
- 3. Встраивание алгоритмов машинного обучения на уровне микроконтроллера
- 4. Примеры реальных решений

современном мире наблюдается стремительное развитие технологий Интернета вещей (ІоТ), киберфизических систем, робототехники и систем автоматического управления. Основой этих технологий являются интеллектуальные сенсорные узлы (ИСУ) устройства, обеспечивающие сбор, предварительную обработку, анализ и передачу данных о состоянии окружающей среды или технического объекта.

УЗЛЫ

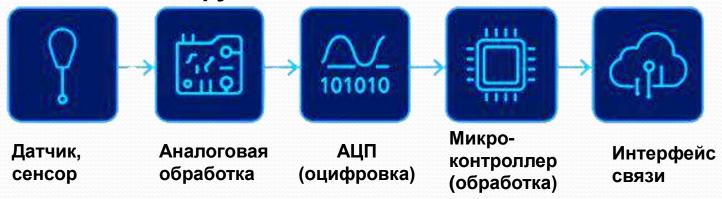
Интеллектуальные сенсорные комбинацию сенсоров, электроники вычислительных средств И объединённых в единое устройство. Их задача преобразовать физические величины в цифровую форму, проанализировать полученные и передать их данные вышестоящий уровень системы управления или мониторинга.

представляют

обработки

собой

сигналов,


Назначение и функции интеллектуального сенсорного узла

Главная цель интеллектуального сенсорного узла — **повышение точности, достоверности и информативности измерений** за счёт использования встроенных вычислительных ресурсов.

Основные функции ИСУ:

- 1. **Измерение** регистрация физических параметров (температуры, давления, вибрации, влажности, скорости потока и т. д.).
- 2. Аналого-цифровое преобразование перевод аналогового сигнала в цифровую форму.
- 3. **Цифровая фильтрация** подавление шумов, устранение дрейфа, компенсация внешних воздействий.
- 4. **Вычислительная обработка** расчёт производных параметров, усреднение, логическая обработка, применение моделей.
- 5. **Самодиагностика** контроль исправности сенсора, проверка диапазона измерений.
- 6. Передача данных обмен информацией с другими узлами или управляющим центром по проводным или беспроводным интерфейсам.
- 7. Энергоменеджмент оптимизация энергопотребления, переход в спящий режим при отсутствии активности.

Типовая структура интеллектуального сенсорного узла включает следующие основные функциональные блоки:

Основные компоненты сенсорного узла

1. Сенсор (первичный измерительный преобразователь)

Назначение: преобразует физическую величину (температуру, давление, ускорение, влажность и т.д.) в электрический сигнал.

Типы сенсоров: термоэлектрические (термопары, терморезисторы); емкостные (измерение деформации, влажности); индуктивные (перемещение, скорость); оптические (освещенность, расстояние); пьезоэлектрические (вибрации, ударные воздействия).

Характеристики: чувствительность, диапазон измерений, линейность, температурная стабильность, помехоустойчивость.

2. Аналоговая обработка

Сенсорный сигнал часто слаб и содержит шумы. Для корректной работы АЦП выполняется:

- усиление (операционные усилители, инструментальные усилители);
- аналоговая фильтрация (низкочастотные, полосовые фильтры);
- смещение нуля, ограничение амплитуды;
- компенсация температурных и внешних воздействий.

3. Аналого-цифровой преобразователь (АЦП)

Задача: перевод аналогового сигнала в цифровую форму. Параметры АЦП:

- разрядность (8-24 бита),
- частота дискретизации,
- динамический диапазон,
- время преобразования.

Типы: последовательного приближения, сигма-дельта, двойного интегрирования.

4. Микроконтроллер или цифровой процессор Микроконтроллер это "мозг" сенсорного узла.

Функции микроконтроллера:

- цифровая фильтрация (скользящее среднее, медианный фильтр, фильтр Калмана и т.п.);
 - линеаризация характеристик датчика;
 - температурная компенсация;
 - калибровка и самодиагностика;
 - управление питанием;

реализация алгоритмов передачи данных.

Современные микроконтроллеры часто содержат встроенные АЦП, интерфейсы связи и энергоэффективные режимы сна.

5. Модуль связи

Передача данных в модуле связи может осуществляться:

- по проводным интерфейсам: RS-485, CAN, I²C, SPI, Modbus;
- по беспроводным каналам: Wi-Fi, Bluetooth, ZigBee, LoRa, NB-IoT.

Интерфейс выбирается в зависимости от расстояния, скорости передачи и энергопотребления.

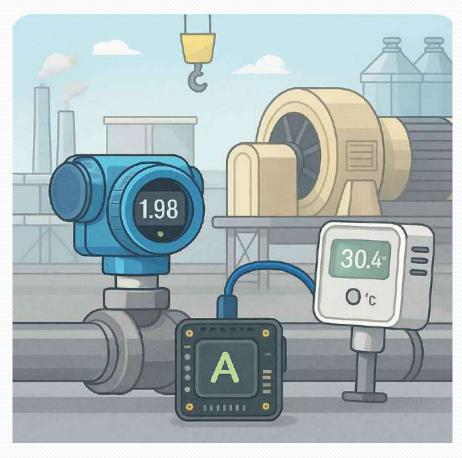
6. Источник питания

Может включать:

- аккумулятор или батарею;
- преобразователь напряжения (DC-DC);
- систему энергосбережения;
- в автономных системах модуль энергохранения (солнечные панели, термоэлектрические элементы).

7. Программное обеспечение сенсорного узла

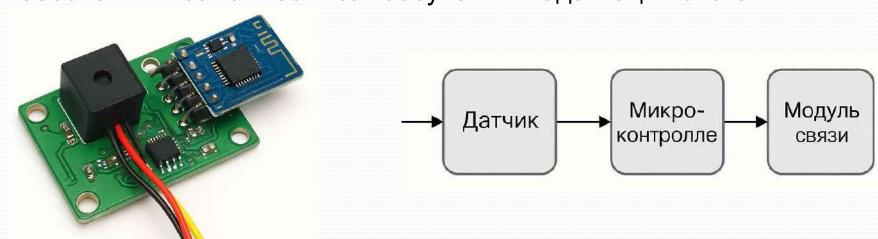
Программное обеспечение включает:


- драйверы устройств (датчика, АЦП, интерфейсов);
- алгоритмы фильтрации и коррекции;
- протоколы связи;
- средства обновления прошивки (ОТА);
- диагностические функции (контроль диапазонов, ошибка датчика, сбои).

Приведем некоторые практические примеры применения интеллектуальных сенсорных узлов

- в системах промышленной автоматизации (контроль давления,

температуры, вибраций и др. параметров);


- в **автомобильной технике** (ABS, ESP, датчики кислорода, ускорений);
- в **энергетике** (мониторинг токов, напряжений, утечек);
- в **экологическом мониторинге** (влажность, загрязнение воздуха);
- в **медицинских устройствах** (мониторинг физиологических параметров пациента);
- в **«умных» зданиях** и **сельском** хозяйстве.

Интеллектуальный сенсорный узел — это ключевой элемент современной измерительной инфраструктуры. Он объединяет сенсорные, вычислительные и коммуникационные функции, обеспечивая автономность, надежность и высокую точность сбора информации.

Переход от традиционных сенсоров к интеллектуальным позволяет:

- уменьшить нагрузку на центральные контроллеры,
- снизить объем передаваемых данных,
- повысить отказоустойчивость и точность,
- обеспечить возможность самообучения и адаптации систем.

Энергопотребление и энергосбережение

Энергопотребление — один из ключевых факторов при проектировании интеллектуальных сенсорных узлов (ИСУ), особенно в распределённых беспроводных системах мониторинга. Ограниченный энергетический ресурс (батареи, элементы питания, возобновляемые источники энергии) требует оптимизации потребления на всех уровнях — от аппаратуры до алгоритмов обработки данных.

Цель энергосбережения заключается не только в снижении потребляемой мощности, но прежде всего — в максимизации времени автономной работы сенсорного узла при сохранении требуемого уровня функциональности, точности и надёжности измерений.

Это особенно важно для распределённых систем мониторинга и управления (например, сетей IoT, беспроводных сенсорных сетей, удалённых экологических или промышленных станций), где физический доступ к устройствам ограничен, а замена элементов питания или обслуживание экономически и технически затруднены.

Энергосбережение направлено на обеспечение долговременной непрерывной работы узла в автономном режиме, поддержание стабильности функционирования при колебаниях энергопитания, а также возможность использования энергоулавливающих технологий.

Основные источники энергопотребления в ИСУ

Типичный сенсорный узел включает:

- **1. Датчик** потребляет энергию при измерении (активный режим) и в состоянии ожидания.
- **2. Аналоговая часть (усилитель, АЦП)** зависит от частоты дискретизации и архитектуры преобразования.
 - 3. Микроконтроллер (МК) выполняет обработку, управление и связь.
- 4. **Модуль беспроводной связи** один из самых «прожорливых» компонентов.
- **5. Периферия и вспомогательные узлы** стабилизаторы, интерфейсы, индикаторы и т.д. *Баланс энергопотребления*

Компонент	Активный режим	Спящий режим	Комментарий
Датчик	1–10 мА	<10 μΑ	Важно выбирать датчики с функцией сна
АЦП	0.5–2 мА	<1 µA	Влияет частота выборки
мк	5–20 мА	1–10 μΑ	Современные МК имеют несколько режимов сна
Радиомодуль	15–50 мА	<1 µA	Энергия на передачу может составлять до 70% общего расхода

Методы энергосбережения

Интеллектуальные сенсорные узлы (ИСУ) — это автономные устройства, часто работающие от батарей или энергоустановок с ограниченными ресурсами.

Поэтому энергосбережение — ключевой аспект их проектирования и эксплуатации. В общем случае при классификации все методы можно разделить на аппаратные и программные.

К аппаратным можно отнести следующие методы:

- использование низковольтных МК (1,8–3,3 В);
- применение энергоэффективных датчиков с встроенным управлением питанием.
- динамическое управление питанием (Power Gating) отключение неиспользуемых блоков.
 - регулировка тактовой частоты (Dynamic Frequency Scaling).
- использование *энергоулавливающих технологий* солнечные элементы, вибрационные, термоэлектрические генераторы.

Такие решения позволяют существенно **снизить энергозатраты** без потери точности и скорости обработки данных, продлевая срок автономной работы узла и повышая его надёжность в условиях ограниченного энергоснабжения.

Методы энергосбережения

К программным методам относятся:

- использование *режимов сна*: глубокий сон, ожидание, пониженная частота;
- *буферизация данных* передача пакетом, а не по одному измерению;
 - *адаптивное управление частотой измерений* в зависимости от динамики процесса;
- *событийно-ориентированная активация* пробуждение только при значительных изменениях сигнала;
- *сжатие данных и предобработка на месте* уменьшение объёма передаваемой информации.

Программные методы энергосбережения в интеллектуальных сенсорных узлах направлены на оптимизацию работы вычислительных и коммуникационных процессов.

Они реализуются через управление режимами сна, адаптивное планирование задач, сокращение частоты опроса датчиков, а также минимизацию объёма передаваемых данных за счёт локальной обработки. Такие подходы позволяют динамически подстраивать энергопотребление под текущие условия, сохраняя точность и функциональность системы при минимальных энергетических затратах.

Оптимизация передачи данных

Передача данных — один из самых энергоёмких процессов в работе интеллектуального сенсорного узла. Оптимизация этого этапа направлена на минимизацию энергозатрат и загрузки сети при сохранении достоверности и своевременности информации.

Главная идея — **уменьшить частоту и объём передаваемых данных**, передавая только действительно значимые или обработанные результаты измерений.

Оптимизация передачи данных предполагает:

- минимизировать частоту отправки.
- использовать **энергосберегающие протоколы**.
- применять **локальную агрегацию** данных вычисление среднего, медианы, тенденции перед передачей.
- использовать режимы *рабочий цикл* (duty-cycling) радиомодуль включается только при необходимости.

Оптимизация передачи данных в интеллектуальных сенсорных узлах — это комплекс мер, направленных на сокращение частоты, объёма и длительности сеансов связи при сохранении точности мониторинга. Она достигается за счёт локальной обработки, адаптивных алгоритмов, компрессии, буферизации и энергосберегающих протоколов связи.

Интеллектуальные сенсорные узлы часто устанавливаются в труднодоступных или автономных местах, где:

- зачастую нет возможности подключить проводное питание;
- а замена батарей трудна или экономически нецелесообразна.

Поэтому использование энергоулавливающих технологий (Energy Harvesting) становится важным направлением развития. Их цель — преобразование энергии окружающей среды в электрическую, достаточную для питания сенсора, микроконтроллера и модуля связи.

Основные задачи, решаемые с помощью этих технологий:

- увеличение **времени автономной работы** узла (до нескольких лет или полностью автономно);
 - снижение затрат на обслуживание (замену источников питания);
 - повышение надёжности и устойчивости сенсорной сети;
 - поддержание экологичности и энергоэффективности систем.

ИСУ могут использовать различные типы внешней энергии, в зависимости от условий эксплуатации, например: солнечная энергия; тепловая энергия; механическая энергия; электромагнитная энергия; химическая или биологическая энергия

1. Солнечная энергия

Наиболее распространённый источник в наружных и автономных устройствах, Используются фотовольтаические элементы (солнечные панели), преобразующие свет в электричество:

Преимущества:

- высокая плотность энергии;
- надёжность и долговечность;
- хорошо подходит для периодического накопления энергии.

Недостатки:

- зависимость от освещённости;
- необходимость буферного накопителя (аккумулятора или суперконденсатора).

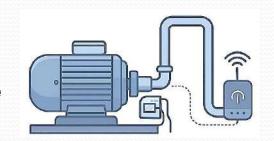
Пример: погодная станция с солнечным элементом и резервным литий-ионным аккумулятором.

2. Тепловая энергия (термоэлектрическое преобразование)

Используется **эффект Зеебека** — генерация электрического тока при наличии разности температур на термоэлементе. Подходит для объектов с устойчивым тепловым градиентом: промышленные компрессоры;

поверхности зданий. трубопроводы; двигатели,

Эффективность таких термоэлектрических преобразователей сравнительно невелика, но достаточна для питания маломощных сенсоров.


Пример: термодатчик, питающийся от разницы температуры трубы и окружающего воздуха.

3. Механическая энергия (вибрации, движения)

Применяются пьезоэлектрические, электростатические или электромагнитные преобразователи, которые вырабатывают электричество при колебаниях или механических деформациях. Особенно полезны в средах с постоянными вибрациями: транспортные системы, турбины, насосы, двигатели.

Энергия может использоваться для периодического подзаряда накопителя или непосредственного питания узла.

Пример: вибрационный датчик на промышленном насосе с пьезоэлементом, обеспечивающим энергию для передачи данных о состоянии оборудования.

4. Электромагнитная энергия (радиоволны, поля)

Используются антенны или катушки индуктивности для улавливания энергии радиосигналов (RF energy harvesting).

Эффективно**сть** низкая, но метод полезен для питания устройств, расположенных в радионасыщенной среде (например, возле Wi-Fi или GSM передатчиков).

Пример: беспроводные метки и RFID-сенсоры, питающиеся от энергии считывателя.

5. Химическая или биологическая энергия

Энергия выделяется при

электрохимических реакциях или **биоэлектрогенезе** (например, микробные

топливные элементы в почве или воде).

Используется в экологическом мониторинге, где есть доступ к органическим средам.

Пример: сенсор качества воды с питанием от микробной топливной ячейки.

Системы энергоулавливания

Полноценная система энергоулавливания включает в себя включает несколько ключевых узлов это:

- 1. Источник энергии (солнечная панель, пьезоэлемент и т. д.);
- **2. Энергетический преобразователь** формирует стабильное напряжение (DC/DC-конвертер);
- **3. Контроллер управления питанием** управляет зарядом, питанием узла и распределением энергии;
- **4. Накопитель энергии** суперконденсатор, литий-ионный или твердотельный аккумулятор;
- **5. Модуль сенсора и микроконтроллер**, работающие в низкопотребляющих режимах.

Преимущества внедрения энергоулавливающих технологий

- 1. Повышение автономности узлов;
- 2. Снижение эксплуатационных затрат;
- 3. Отсутствие необходимости замены батарей;
- 4. Повышение устойчивости к сбоям в питании;
- 5. Экологичность и снижение углеродного следа.

Системы энергоулавливания

Ограничения и проблемы

- 1. Низкая плотность улавливаемой энергии требует сверхнизкопотребляющих схем;
 - 2. Необходимость буферного накопления энергии;
- 3. Зависимость от внешних условий (освещённость, вибрации, температура);
 - 4. Сложность интеграции с существующими узлами и микроконтроллерами.

Энергоулавливающие технологии — ключ к созданию понастоящему автономных интеллектуальных сенсорных узлов. Они позволяют использовать окружающую среду как источник питания, что

делает возможным **долговременное**, **устойчивое и экологически чистое функционирование** распределённых систем мониторинга.

Интеграция энергоулавливания с низкопотребляющими микроконтроллерами и адаптивными алгоритмами энергоменеджмента — одно из наиболее перспективных направлений развития современных сенсорных сетей и Интернета вещей.

Встраивание алгоритмов машинного обучения в сенсорные системы

Современные сенсорные системы всё чаще становятся **интеллектуальными**, то есть не просто измеряют физические параметры, а **анализируют и интерпретируют** данные.

Это стало возможным благодаря развитию технологий встраиваемого машинного обучения (Embedded Machine Learning) и направлению TinyML — машинное обучение на микроконтроллерах и устройствах с низким энергопотреблением.

Главная идея заключается в том, что обработка данных переносится ближе к источнику измерений, то есть прямо в сенсорный узел. Такой подход снижает объём передаваемых данных, уменьшает задержки, экономит энергию и позволяет системе работать автономно — даже без постоянной связи с сервером.

Машинное обучение (ML) — это набор методов, которые позволяют системе извлекать закономерности из данных и принимать решения без жёстко заданных алгоритмов.

Во встраиваемых системах эти алгоритмы реализуются в миниатюрной и оптимизированной форме, способной работать:

- на **микроконтроллерах** (MCU),
- на **системах-на-кристалле (SoC)**,
- или на специализированных модулях (Al co-processor, NPU).

<u>Архитектура интеллектуального</u> <u>сенсорного узла с ML</u>

Интеллектуальный сенсорный узел собирает данные с датчиков, предварительно фильтрует и оцифровывает сигналы, после чего микроконтроллер выполняет встроенные алгоритмы машинного обучения.

Модель анализирует данные локально. извлекает ключевые признаки И определяет состояние объекта норму, аномалию ИПИ Узел передаёт событие. не сырые итоговые выводы, данные, ЧТО объём трафика снижает И энергопотребление.

Такой подход обеспечивает автономность, более быструю реакцию и высокую надёжность системы мониторинга.

Алгоритмы ML, применяемые в сенсорных узлах

Тип алгоритма	Применение	Особенности
Линейная регрессия	Прогноз численных значений (температура, уровень, ток и т.п.)	Простая, быстрая, требует мало памяти
Логистическая регрессия	Классификация (норма/аномалия)	Хороша для бинарных решений
Деревья решений, Random Forest	Распознавание состояний, событий	Объяснимые, легко реализуются в коде
К-ближайших соседей (kNN)	Распознавание шаблонов	Простая логика, но требует памяти для выборки
Нейронные сети (TinyNN)	Распознавание сложных сигналов, изображений, звуков	Используются в упрощённом виде, например с TensorFlow Lite Micro
Байесовские классификаторы	Прогноз вероятностей	Эффективны при ограниченных данных

Преимущества локального анализа данных сенсорного узла с ML

Встраивание ML непосредственно в сенсорный узел даёт целый ряд преимуществ:

1. Эффективность и быстродействие

- анализ данных происходит **в реальном времени**, без задержек, связанных с передачей в облако.
- система может **реагировать мгновенно** например, остановить оборудование при аномалии.

2. Экономия энергии

- передаётся **меньше данных** только результаты анализа, а не весь поток измерений.
- модули связи (Wi-Fi, LoRa, BLE) активируются **только при необходимости**.

3. Автономность

- узел может работать офлайн, без подключения к сети.
- даже при сбое связи, система продолжает выполнять свои функции.

4. Конфиденциальность

Данные обрабатываются **локально**, что снижает риск утечки информации.

Практические примеры применения

Область	Что измеряется	Задача ML
Промышленность	Вибрации двигателя	Диагностика неисправностей по спектру вибраций
Энергетика	Ток, напряжение	Выявление перегрузок или утечек энергии
Экология	Газовые сенсоры	Классификация источников загрязнения
Сельское хозяйство	Влажность почвы, освещённость	Определение оптимального режима полива
Здравоохранение	Биосигналы (ECG, SpO ₂)	Выявление отклонений от нормы, тревожные сигналы

Технологии и программные платформы

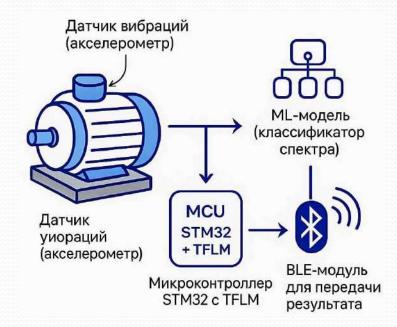
Инструменты разработки:

- TensorFlow Lite for Microcontrollers (TFLM) открытая библиотека машинного обучения от Google.
- Edge Impulse платформа для обучения и внедрения машинного обучения на маломощных устройствах.
 - Arduino ML Kit простое внедрение ML в проекты Arduino.
- MicroML, SensiML, uTensor специализированные набор инструментов, библиотек, примеров кода и документации (SDK) для интеграции моделей.

Аппаратная основа:

- Маломощные микроконтроллеры STM32, ESP32, Nordic nRF52, TI MSP430, Raspberry Pi Pico.
- Микроконтроллеры с поддержкой AI-ускорителей (например, STM32H7, NXP i.MX RT).

Типовой пример реализации машинного обучения в сенсорный системе


Задача: Определение неисправности двигателя по вибрации.

Состав узла:

- Датчик вибраций (акселерометр)
- Микроконтроллер STM32 c TFLM
- ML-модель (классификатор спектра)
- BLE-модуль для передачи результата

Принцип работы:

- Датчик снимает ускорение по осям X/Y/Z.

- MCU выполняет быстрое преобразование Фурье (БПФ) и извлекает признаки (частоты, амплитуды).
- Встроенная ML-модель классифицирует сигнал как "норма" или "аномалия".
 - Только при аномалии передаётся сообщение оператору.

Результат:

Система работает автономно, снижает трафик на 90% и потребляет менее 1мВт.

Встраивание алгоритмов машинного обучения в сенсорные системы

Примеры реализации решений интеллектуальных сенсорных узлов

1. Метеостанция. Цель: Создать автономную loT-метеостанцию, способную не только собирать данные о погоде (температура, влажность, давление, освещённость), но и выполнять локальный анализ, прогнозирование и выявление аномалий с помощью встроенных алгоритмов машинного

обучения.

Интеллектуальный узел метеостанции представляет собой автономный модуль, включающий микроконтроллер (STM32/ESP32), набор метеорологических датчиков и солнечную систему питания. Все элементы помещены в герметичный погодозащитный корпус, обеспечивающий надёжную работу устройства в уличных условиях.

В состав сенсорного блока входят датчики температуры и влажности, атмосферного давления и освещённости. Они периодически измеряют состояние среды, после чего данные передаются в микроконтроллер для обработки. Перед дальнейшей работой информация фильтруется, нормализуется и подготавливается для анализа.

Пример реализации юТ-метеостанции

Главная особенность разработанного узла *loT-метеостанции* — использование встроенных алгоритмов машинного обучения. Микроконтроллер выполняет локальный анализ, что позволяет:

- прогнозировать краткосрочные изменения погодных параметров,
- выявлять аномальные значения и возможные неисправности датчиков,
- адаптировать частоту измерений и передачи данных для экономии энергии.

Благодаря локальной аналитике устройство отправляет в сеть только полезные и уже обработанные данные: текущие параметры, прогнозы и уведомления о выявленных отклонениях. Это снижает объём трафика, уменьшает энергопотребление и повышает автономность работы.

Периодически узел может получать обновления алгоритмов или настроек, что позволяет повышать точность и подстраивать модель под условия конкретного региона. Такой подход делает устройство не просто набором датчиков, а полноценным интеллектуальным элементом распределённой климатической системы.

Пример узла для контроля вибраций и состояния НКО

2. Интеллектуальный сенсорный узел для контроля вибрации и состояния насосно-компрессорного оборудования.

Цель: Раннее обнаружение механических неисправностей (подшипники, дисбаланс, засоры), снижение внеплановых простоев и оптимизация технического обслуживания на реальном производственном объекте.

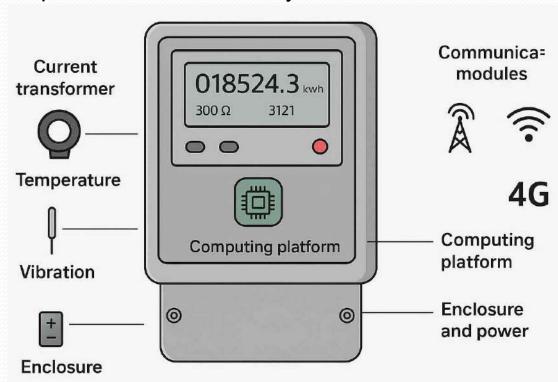
Основные функции узла

- 1. Сбор вибрационных и температурных данных с точки измерения.
- 2. Локальная фильтрация, выделение признаков (FFT, статистика во временной области).
- 3. Локальное обнаружение аномалий и классификация режимов (норма / износ / критическое).
- 4. Отправка только событий/сжатых фич в центральную систему (инциденты, краткосрочные прогнозы).
- 5. Приём обновлённых моделей по OTA; удалённая диагностика.

Пример узла для контроля вибраций и состояния НКО

Интеллектуальный сенсорный узел устанавливается непосредственно на корпус насосно-компрессорного оборудования и в реальном времени регистрирует вибрационные сигналы с помощью высокочувствительного акселерометра. Параллельно измеряется температура корпуса, что позволяет учитывать тепловые режимы и косвенно оценивать нагрузку на агрегат.

Полученные данные поступают в микроконтроллер, где происходит их первичная обработка: фильтрация шумов, выделение спектральных характеристик и нормализация. Далее включается встроенная модель машинного обучения, обученная на образцах нормальных и аварийных режимов. Она анализирует спектр вибраций и определяет наличие признаков типичных неисправностей — износа подшипников, дисбаланса ротора, ослабления креплений, повышенного трения или нарушений центровки.


При обнаружении аномалии узел формирует событие тревоги, оценивает степень риска и передаёт только ключевую информацию по беспроводному каналу (BLE, Wi-Fi или LoRa). В штатном режиме передаются компактные диагностические показатели, а не полный массив вибросигналов, что значительно снижает нагрузку на сеть.

Такой подход позволяет организовать постоянный мониторинг оборудования, своевременно выявлять ухудшение состояния и предотвращать аварии, повышая надёжность и снижать затраты.

Пример реализации узла "Умный счётчик"

3. Интеллектуальный сенсорный узел "Умный счётчик потребления электроэнергии" с локальным ML-анализом.

Узел предназначен для установки на промышленных объектах, производственных площадках или крупных энергопотребителях. Он обеспечивает точный учёт электроэнергии, выявление аномалий потребления и раннее обнаружение нештатных ситуаций с использованием встроенных алгоритмов машинного обучения.

Пример реализации узла "Умный счётчик"

Состав интеллектуального счётчика

- 1. Сенсоры и измерительная часть
- **трансформаторы тока** измерение фазных токов.
- датчик напряжения контроль фазного напряжения и его качество.
- температурный датчик мониторинг нагрева клемм и корпуса счётчика.
- сенсор вскрытия корпуса защита от вмешательства.
- 2. Вычислительная платформа
- микроконтроллер STM32 / ESP32 с поддержкой машинного обучения.
- локальное хранение данных (Flash) для суточных и недельных профилей.
- ML-модель для детекции аномалий и классификации энергетических событий.
 - 3. Модули связи
 - LoRaWAN для удалённых объектов.
- NB-IoT или LTE-Cat M1 для предприятий с доступной сотовой инфраструктурой.
 - Wi-Fi / Ethernet (опционально) внутренняя сеть предприятия.
 - 4. Корпус и питание
 - прочный корпус IP54–IP65.
- питание от измеряемой сети, с резервным аккумулятором для отправки аварийных сообщений.

Пример реализации узла "Умный счётчик"

Интеллектуальный электросчётчик непрерывно измеряет ключевые параметры электрической сети — ток, напряжение и частоту. С помощью встроенных датчиков он формирует дискретные выборки сигнала, которые затем поступают в микроконтроллер. В микроконтроллере данные проходят цифровую фильтрацию, вычисляется активная, реактивная и полная мощность, а также интегральные показатели — суточное, месячное и пиковое потребление энергии.

В основе устройства работает интеллектуальный модуль анализа. MLалгоритмы распознают характерные паттерны нагрузки: определяют типы бытовых или промышленных приборов, фиксируют неравномерности в потреблении, выявляют отклонения от нормальной работы и ранние признаки возможных неисправностей (повышенная нагрузка, частые включения/выключения, нестабильность напряжения). Это позволяет не только учитывать энергию, но и прогнозировать потребление, выявлять неэффективное оборудование и предотвращать аварийные ситуации.

Встроенный коммуникационный модуль автоматически передаёт собранные данные в облачную платформу или диспетчерский центр. Там формируются отчёты, происходит анализ трендов и осуществляется интеграция с системой энергоменеджмента предприятия.

Таким образом, интеллектуальный электросчётчик превращается в полноценный элемент цифровой инфраструктуры: обеспечивает точный учёт, мониторинг качества сети и делает энергопотребление более управляемым.