

— НАО "Карагандинский технический университет им.Абылкаса Сагинова"

Кафедра АПП им. проф. Бырьки В. Ф.

Дисциплина: "Интеллектуальные средства сбора информации"

для студентов образовательной программы 6В07102» – Встроенные цифровые системы управления

Раздел №3 Тема:"Обработка сигналов сенсоров"

Цель: ознакомиться с типовыми схемами включения Датчиков, изучить методы обработки измерений.

> Лектор: ст. преп. каф. АПП Лисицын Дмитрий Владимирович

План

- 1. Электрические схемы включения датчиков.
- 2. Цифровая фильтрация
- 3. Компенсация температурных и внешних воздействий
- 4. Обработка и интерпретация сигналов с нескольких датчиков

Электрические схемы включения датчиков

Электрическая схема включения датчика — это способ соединения чувствительного элемента с источником питания, измерительным устройством и системами обработки сигналов. От правильности выбора схемы зависит:

- точность измерений,
- чувствительность и линейность,
- помехоустойчивость и стабильность работы сенсора,
- энергопотребление и долговечность

Основные принципы включения датчиков

Активные датики — вырабатывают сигнал самостоятельно (например, термоэлектрические, пьезоэлектрические).

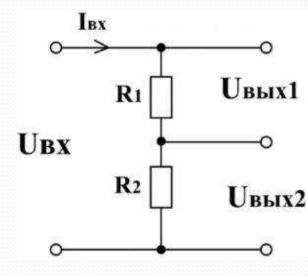
Их подключают напрямую к входу измерительного тракта.

Пассивные датики — изменяют свои электрические параметры (R, L, C) под действием измеряемой величины.

Для таких датчиков необходим внешний источник питания или возбуждения.

Пример: терморезисторы, тензорезисторы, индуктивные, емкостные датчики.

Включение пассивных резистивных датчиков

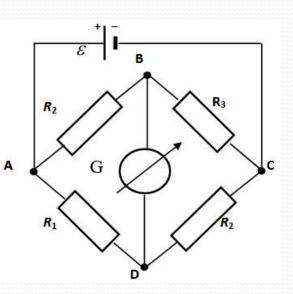

Они измеряют изменение сопротивления R_{x} . Различают следующие измерительные схемы:

1. Делители напряжения (датчик R2 включается последовательно с эталонным резистором R1)

Преимущества: простота, низкая стоимость, возможность получения фиксированного выходного напряжения, низкая зависимостью от частоты напряжения.

Недостатки: невысокая точность, зависит от источника питания; подходит только для датчиков, потребляющих малый ток (единицы миллиампер); эффективность снижается при подключении нагрузки, потребляющей большой ток, что приводит к снижению точности.

Применение: пьзо- тензорезисторы, термисторы, фоторезисторы и т.п..



$$V_{
m out} = V_{
m in} \cdot rac{R_2}{R_1 + R_2}$$

2. Мостовые схемы измерения. Действие мостовых измерений основано на методике сравнения измеряемой величины с образцовой мерой. Мостовые схемы используют индикатор баланса для сравнения двух напряжений, точно так же как и лабораторные весы сравнивают две массы и указывают на то, что они равны.

Стандартная мостовая схема, часто называемая мостом Уитстона.

Классическая мостовая цепь состоит из четырех сопротивлений R1, R2, R3, R4, соединенных последовательно в виде четырехугольника, причем точки A, B, C, D называют вершинами. Ветвь АС, содержащая источник питания Un, называется диагональю литания, а ветвь BD, содержащая сопротивление нагрузки RH, — диагональю нагрузки. Сопротивления R1, R2, R3, R4, включенные между двумя соседним вершинами, называются плечами мостовой цепи.

Они имеют высокую точность и чувствительность. Мостовые схемы применяются не только для измерения сопротивлений, но и для измерения ёмкостей, индуктивностей и других физических величин.

Включение емкостных датчиков

Пассивный ёмкостной датчик — это измерительный элемент, у которого измеряемая физическая величина (давление, влажность, перемещение и т. д.) вызывает изменение ёмкости конденсатора:

$$C = \varepsilon \frac{S}{d}$$

где: C - емкость,

 ε - диэлектрическая проницакиость;

S - площадь обкладок;

d - расстояние между ними.

Такой датчик не генерирует сигнал сам, а требует внешнего источника возбуждения (переменного тока) и схемы преобразования изменения ёмкости в измеряемое напряжение или частоту. Варианты включения:

- **1. Мостовая схема переменного тока** (датчик включается как одно из плеч классического моста по типу моста Уитстона, питаемого переменным током;
- **2.** RC или LC-генераторные схемы, измеряемая ёмкость входит в состав RC- или LC- цепи, определяющей частоту генератора $f = \frac{1}{2\pi RC}$, $f = \frac{1}{2\pi \sqrt{LC}}$

Включение индуктивных датчиков

Индуктивные датчики — это устройства, преобразующие изменение индуктивности в электрический сигнал. Они используются для измерения перемещений, скоростей, толщины, деформаций, давления, уровня и других параметров.

Основной принцип основан на зависимости индуктивности катушки от магнитной проницаемости и взаимного положения элементов магнитной цепи (сердечника, зазора, металлического объекта и т.д.). Основные схемы включения таких датчиков следующие:

1. Мостовая схема переменного тока

Наиболее распространённая схема, аналогичная мосту Уитстона, но работает на переменном токе (четыре плеча моста: одно из них содержит измерительную катушку, индуктивность которой меняется при воздействии измеряемой величины; остальные плечи — образцовые элементы; источник питания — генератор переменного тока; измерительное устройство — фазочувствительный детектор).

2. Схема с генератором переменного тока и детектором амплитуды
В этой схеме катушка датчика является частью LC-контура генератора.

Изменение зазора или положения металлического объекта изменяет индуктивность катушки → частота или амплитуда колебаний меняется.

Примеры схем измерения параметров пассивных датчиков

В качестве примеров, широко используемых схем измерения параметров конденсаторов и индуктивностей можно привести уравновешенные мосты переменного тока, позволяющие получить малую погрешность измерения (до1 %).

Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы. Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост. $0mcrem L_{x}$

0mcчет Q_ж

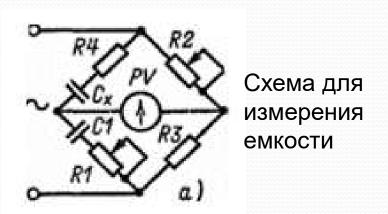
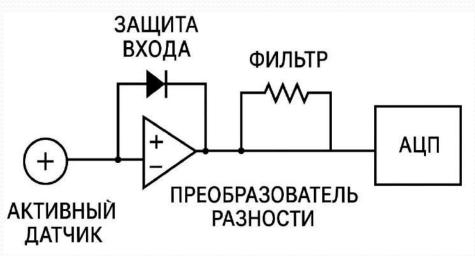


Схема для измерения индуктивности

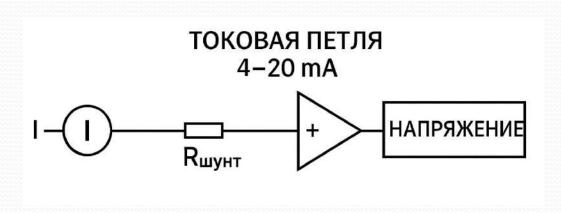

Активный датчик — сенсор, который сам генерирует электрический сигнал (напряжение, ток, заряд, частоту) под влиянием измеряемой физической величины. В отличие от пассивных, он не требует внешнего «возбуждения» (хотя нередко требует питания для электроники внутри). Примеры: термопары, фотодиоды, пьезоэлектрические элементы (генерируют заряд), некоторые микроэлектромеханические системы (MEMS) датчики со встроенной электроникой и т.д.

Классификация выходных сигналов активных датчиков и типовые схемы:

1. Напряжение (V) — источник напряжения.

Типичный пример: термопара → слабое термо-ЭДС.

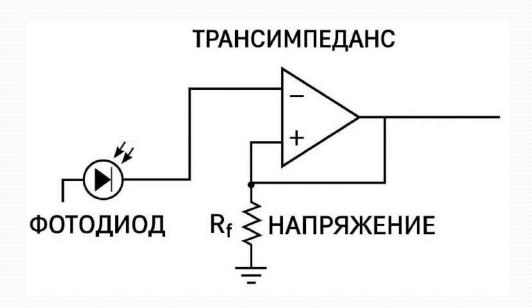
Схема включения: вход дифференциального усилителя (или инструментального усилителя) с высоким коэффициентом усиления, входная защита, фильтр и АЦП


2. Ток (I) — источник тока (например 4-20 mA)

Типичный примеры: ряд промышленных датчиков (тензор/термометр с трансмитором).

Схема включения: токовая петля 4–20 mA → в приёмном устройстве преобразуется в напряжение на шунте (Rшунт), далее усиление/АЦП.

Преимущество: высокая помехоустойчивость, передача на большие расстояния.


Пример расчёта: при Rш = 250 Ω напряжение для токового сигнала в диапазоне 4–20 mA соответствует диапазону 1–5 B.

3. Токовый фототок (фотодиоды в фототоковом режиме)

Схема включения: трансимпедансный усилитель (TIA) — фотодиод в обратном смещении, входной ОУ в конфигурации «трансимпеданс» преобразует фототок в напряжение $V_{out} = -I_{ph} \cdot R_f$.

Особенности: выбор *Rf* определяет чувствительность; низкий входной шум *OY* и компенсация паразитных ёмкостей критичны.

4. Заряд (пьезоэлектрические датчики)

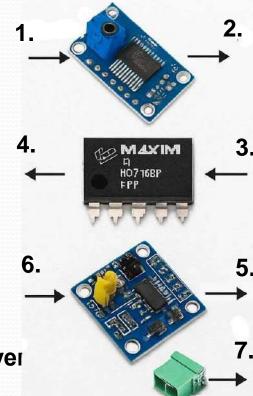
Схема включения: усилитель заряда (charge amplifier) или высокоимпедансный буфер с последующим интегрированием; часто используют вход с очень высоким входным сопротивлением (GΩ) и низким входным током.

Особенности: пьезоэлемент генерирует заряд пропорционально механическому воздействию; для статических измерений неподходит (утечка заряда).

5. Частота / генераторный выход

Типичный пример: генераторный датчик, где измеряемая величина меняет частоту выхода.

Схема включения: счётчик частоты/таймер MCU → цифровая обработка; для больших частот — фронт-триггеры/FPGA.


6. Цифровой встроенный выход

Типичный пример: современные MEMS датчики (IMU, давление, температура) с I²C/SPI/UART/CAN.

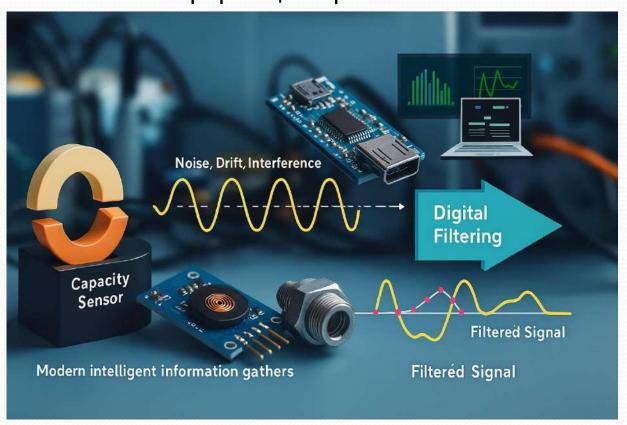
Схема включения: питание + уровневые шины; требуется правильное питание (фильтрация), подтяжки и обработка «wake/sleep» режимов.

Общая структура тракта приёма сигнала от активного датчика

- 1.Входная защита: предохранение от перенапряжений, ESD, ограничение тока, TVS, последовательные резисторы.
- 2.Буфер / входной каскад: высокоомный буфер (если источник слаб); инструментальный усилитель для дифференциальных малосигнальных источников.
- 3.Усиление и согласование (аналоговая обработка): ОУ с низким шумом, выбор полосы пропускания; ТІА для фотодиодов; charge amp для пьезо.
- 4.Фильтрация (антиалиасинг): аналоговый НЧ/полосовой фильтр перед АЦП.
- **5.АЦП**: выбор разрядности и частоты дискретизации.
- 6. Цифровая обработка (MK/DSP/FPGA): компенсация, калибровка, линейризация, цифровые фильтры, диагностика.
- 7.Интерфейсы/выход: преобразование в требуег протокол/ток/напряжение; защита линии.

Типовые интерфейсы датчиков в интеллектуальных узлах датчиков

Тип сигнала	Пример схемы включения	Преимущества	Применение
0–10 B	Делитель/усили тель	Простота	Аналоговые датчики
4–20 мА	Токовый передатчик	Помехоустойчи вость	Промышленность
I ² C, SPI, UART	Цифровое подключение	Высокая точность, возможность адресации	Умные сенсоры
CAN, Modbus	Полевая шина	Передача на большие расстояния	Автоматизация


Электрические схемы включения датчиков

Электрическая схема включения — ключевой элемент при разработке интеллектуальной системы сбора данных. Она обеспечивает: преобразование физического сигнала в измеренный электрический сигнал, компенсацию помех и нелинейностей, корректную передачу данных в цифровой модуль.

Цифровая фильтрация

Современные интеллектуальные системы сбора информации основаны на использовании разнообразных датчиков, преобразующих физические величины в электрические сигналы. На пути от датчика до вычислительного устройства сигнал подвергается множеству искажений — шумам, дрейфам, наводкам. Цель цифровой фильтрации — улучшение качества сигнала, то есть выделение полезной информации при минимальных искажениях.

Цифровая фильтрация

Задачи цифровой фильтрации:

- -подавление шумов;
- -сглаживание случайных колебаний;
- -устранение выбросов;
- -прогнозирование и оценка состояния системы;
- -подготовка данных к анализу и принятию решений.

Общая классификация цифровых фильтров:

- 1. По принципу действия:
 - -фильтры сглаживания (усреднения);
 - -рекурсивные (адаптивные) фильтры;
 - -нелинейные фильтры (например, медианные).
- 2. По типу реализации:
 - -фильтры с конечной импульсной характеристикой (FIR);
 - -фильтры с обратной связью (IIR)
- 3. По назначению:
 - -фильтры нижних частот (Low-Pass);
 - -фильтры верхних частот (High-Pass);
 - -полосовые фильтры;
 - -режекторные (заграждающие).

Фильтр скользящего среднего

Фильтр скользящего среднего — один из простейших цифровых фильтров. Он заменяет текущее значение сигнала на **среднее значение нескольких последних измерений**: *нелинейные фильтры* (например, медианные). N-1

$$y[n] = rac{1}{N} \sum_{k=0}^{N-1} x[n-k]$$

где: x[n] — входной сигнал,

y[n] — выходной сигнал,

N — размер окна усреднения.

Особенности:

- сглаживает шумовые колебания.
- подходит для медленно изменяющихся сигналов.
- не требует сложных вычислений легко реализуется на микроконтроллере.
 - задерживает реакцию системы (фазовое запаздывание).

Пример применения:

- сглаживание выходных данных с термопар, датчиков давления, уровня, расхода;
 - предобработка данных для последующего цифрового анализа

Медианный фильтр

Медианный фильтр — **нелинейный** фильтр, заменяющий текущее значение сигнала на **медиану** из окна данных.

$$y[n] = \operatorname{median}(x[n-k], \dots, x[n], \dots, x[n+k])$$

где размер окна 2k+1.

(Медиана в окне данных фильтра определяется путем сортировки всех значений в этом окне по возрастанию, а затем нахождения значения по середине списка: если количество значений нечетное, это центральный элемент; если четное — это среднее между двумя центральными элементами.)

Особенности:

- эффективен для удаления **импульсных шумов** (выбросов)...
- сохраняет **резкие фронты и переходы** в сигнале, в отличие от усреднения.
 - не вызывает фазового сдвига.
 - вычислительно сложнее, чем фильтр среднего (требуется сортировка)

Пример применения:

- обработка сигналов с датчиков положения, уровня, ультразвуковых сенсоров;
 - устранение выбросов в данных GPS и акселерометров;
 - предварительная фильтрация изображений и видеопотоков.

Фильтр Калмана

Фильтр Калмана — **оптимальный рекурсивный фильтр** для оценки состояния системы в присутствии шумов измерений и модели. Используется, когда сигнал можно описать через динамическую модель:

$$egin{aligned} x_k &= A x_{k-1} + B u_k + w_k \ & \ z_k &= H x_k + v_k \end{aligned}$$

где x_k - вектор состояния,

 u_k - входное воздействие,

 z_k - измеренный сигнал,

 ω_k , υ_k - шумы модели и измерений.

Преимущества:

- оптимален при гауссовских шумовых моделях.
- позволяет **оценивать скрытые переменные**, недоступные прямым измерениям.
 - работает в режиме реального времени.
 - легко расширяется до нелинейных систем

Пример применения:

- слияние данных GPS + инерциальных датчиков (IMU);
- оценка скорости и положения в робототехнике;
- обработка сигналов в медицинских приборах (например, ЭКГ).
- прогнозирование в системах управления

Сравнительный анализ фильтров

Критерий	Скользящее среднее	Медианный	Калмана
Тип	Линейный	Нелинейный	Рекурсивный, стохастический
Устойчивость к выбросам	Низкая	Высокая	Средняя (в зависимости от модели)
Сложность	Низкая	Средняя	Высокая
Реакция на изменения	Медленная	Средняя	Быстрая
Задержка сигнала	Есть	Нет	Нет (минимальная)
Возможность адаптации	Нет	Нет	Да
Типичные применения	Сглаживание шумов	Удаление выбросов	Оценка состояния системы

Цифровая фильтрация

Цифровая фильтрация— ключевой этап интеллектуальной обработки данных.

Выбор метода фильтрации определяется характеристиками сигнала, условиями измерения и ресурсами вычислителя. Компетентное применение фильтров (в том числе адаптивных) позволяет значительно повысить точность и стабильность измерительных систем.

Компенсация температурных и внешних воздействий

Любой измерительный элемент, будь то тензорезистор, термопара, пьезоэлемент или оптический сенсор, характеризуется определённой **температурной зависимостью своих параметров**. Изменение температуры окружающей среды вызывает отклонение чувствительности, смещение нуля, дрейф выходного сигнала. Даже при стабильных условиях измеряемой величины прибор может демонстрировать изменение показаний только из-за термодрейфа. Подобные эффекты особенно заметны при длительной работе систем, а также в полевых условиях — на открытых промышленных площадках, транспортных средствах, энергетических установках и т.п.

Кроме температуры, на точность измерений влияют и другие внешние факторы такие как: механические вибрации; электромагнитные помехи; влажность; загрязнение среды; старение компонентов измерительных систем.

Внедрение интеллектуальных функций компенсации позволяет формировать **умные сенсорные узлы**, способные не только измерять, но и самостоятельно анализировать и корректировать результаты.

Основные виды внешних воздействий

- 1. Температурные влияния:
- изменение чувствительности, нуля и коэффициента передачи.
- термо-ЭДС в соединениях разнородных металлов
- изменение сопротивлений, ёмкостей и дрейф опорных напряжений.
 - 2. Механические воздействия:
 - вибрации, удары, деформации монтажных элементов.
 - микроперемещения контактов, разъёмов, пайки.
 - 3. Электромагнитные и радиочастотные помехи:
 - индуктивные наводки от силовых кабелей, двигателей.
- ЭМИ от радиопередатчиков, частотных преобразователей. 4. Влажность и загрязнения:
 - увеличение токов утечки, коррозия контактов.
 - изменение диэлектрических свойств материалов.
 - 5. Старение и деградация компонентов:
- изменение параметров полупроводниковых и пассивных элементов.
 - механическое расслабление упругих чувствительных элементов.

Температурная компенсация

Пассивная (аппаратная) компенсация:

Метод основан на **взаимном уравновешивании температурных эффектов** в электрических схемах и датчиках.2. Механические воздействия:

Примеры:

1. Мостовая схема (например, тензомост):

- резисторы с одинаковыми температурными коэффициентами сопротивления (ТКС).
 - влияние температуры компенсируется за счёт симметрии моста.
 - изменение температуры влияет на все плечи одинаково → выход ≈ 0.

2. Использование терморезисторов :

- для корректировки коэффициента усиления или смещения операционного усилителя.
 - компенсация нелинейных характеристик чувствительного элемента.

3. Опорные элементы с низким ТК:

- прецизионные резисторы, стабилитроны, эталонные источники напряжения.
- используются в измерительных усилителях, АЦП и источниках питания.

Температурная компенсация

Активная (электронная) компенсация

Метод основан на **измерении температуры** и **коррекции сигнала датчика** с учётом известной температурной зависимости.

Примеры:
$$U_{ ext{ iny ISM_KOMII}} = U_{ ext{ iny ISM}} - k_T (T-T_0)$$

где: $U_{\text{изм}}$ - измеренный сигнал;

 $oldsymbol{k_T}$ - температурный коэффициент;

 T_0 - базовая температурная калибровка;

Реализация:

- введение температурного датчика (терморезистор или термопара).
- микроконтроллер или цифровой сигнальный процессор (DSP) выполняет цифровую коррекцию.
- таблица поправок (Look-Up Table) или полиномиальная аппроксимация.

Программная компенсация (цифровая):

Современные интеллектуальные датчики используют встроенные микроконтроллеры, которые выполняют:

- измерение температуры;
- коррекцию калибровочных коэффициентов;
- линеаризацию характеристик.

Компенсация других внешних воздействий

Компенсация вибраций и механических нагрузок:

- использование **механических демпферов**, виброизоляторов, гелевых уплотнений.;
- дифференциальные конструкции датчиков измеряется разность сигналов двух чувствительных элементов;
- Фильтрация вибрационного шума (например, цифровой фильтр низких частот).

Компенсация электромагнитных помех:

- экранирование кабелей и корпусов;
- скручивание сигнальных проводов (витая пара);
- фильтры (LC, RC) на входах;
- разделение цепей "сигнал/питание" на печатной плате.

Компенсация влияния влажности:

- использование герметичных корпусов и влагостойких покрытий (лак, силикон);
 - периодическая автокалибровка или контроль базового уровня.;
- Применение датчиков с встроенной температурно-влажностной коррекцией.

Компенсация других внешних воздействий


Компенсация старения компонентов:

- периодическая перекалибровка системы (программная);
- самодиагностика сравнение текущих параметров с эталонными;
- использование компонентов с низким дрейфом (например, резисторы класса 0,1%).

 Примеры реализации компенсаций

Объект Источник ошибки Метод компенсации Реализация Мост Уитстона с Тензодатчик Температура Пассивная компенсационными давления резисторами Нелинейность Таблица коррекции в Термоэлектри Цифровая термо-ЭДС ческий датчик МK Измерение (Т) и Температурная Фотоэлемент зависимость тока корректировка Активная тёмного состояния усиления Ультразвуково Температура и Коррекция скорости Программная й сенсор звука в воздухе влажность Датчик Цифровой фильтр Вибрации Алгоритмическая Калмана ускорения

Архитектура системы с компенсацией

Компенсация температурных и внешних воздействий — неотъемлемая часть интеллектуальных систем измерения. От корректного выбора метода компенсации зависит **точность**, **стабильность и долговечность** всего измерительного комплекса.

Обработка и интерпретация сигналов с нескольких датчиков

Современные интеллектуальные системы измерения и управления всё чаще используют **множественные датчики**, обеспечивающие получение информации о различных физических параметрах объекта или процесса.

Использование нескольких источников данных позволяет повысить точность, надёжность и устойчивость системы, однако требует применения методов многоканальной обработки и интеграции данных.

Причины использования нескольких датчиков

- **1. Повышение точности измерений** усреднение данных, компенсация погрешностей.
- **2. Повышение надёжности** дублирование измерений и обнаружение отказов.
- **3. Измерение разных физических величин**, взаимосвязанных с одной целью (например, давление, температура, вибрации).
- **4. Пространственная избыточность** использование распределённых сенсорных сетей.
- **5. Информационная избыточность** разные датчики дают взаимодополняющие данные о состоянии системы.

Этапы обработки сигналов от нескольких датчиков

Обработка многодатчиковых данных включает несколько уровней:

- 1. Предварительная обработка:
- синхронизация данных по времени;
- цифровая фильтрация (удаление шумов, выбросов);
- линеаризация характеристик датчиков;
- компенсация температурных и внешних воздействий;
- нормализация шкал измерений (приведение к общим единицам).
- 2. Слияние данных. Слияние данных это объединение информации от нескольких датчиков в единое представление.

Основные уровни слияния:

- уровень данных объединение исходных сигналов (пример, усреднение показаний термопар);
 - уровень признаков извлечение ключевых характеристик (амплитуда, фаза, частота);
- уровень решений объединение частных решений, полученных от каждого датчика.

Методы объединения данных

Различают следующие методы объединения данных:

1. Статистические методы:

- взвешенное усреднение;
- Байесовская оценка вероятностей;
- линеаризация характеристик датчиков;
- метод наименьших квадратов (МНК).

2. Фильтрационные методы:

- фильтр **Калмана** оптимальная оценка состояния системы при наличии шумов;
 - расширенный фильтр Калмана (EKF) для нелинейных моделей;
 - фильтр частиц (Particle Filter) для сложных, стохастических систем.

3. Методы на основе нейросетей и машинного обучения:

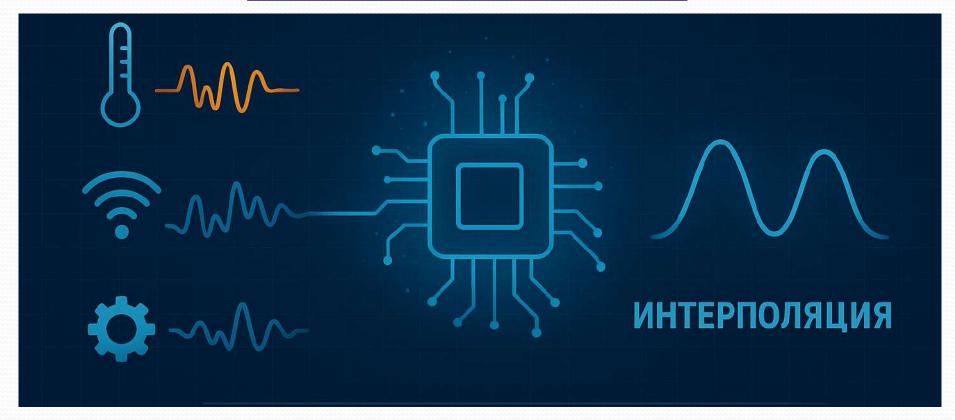
- нейросетевые регрессоры и классификаторы;
- обучение с учителем по многоканальным входным данным;
- алгоритмы ансамблей (bagging, boosting).

Интерпретация данных

Интерпретация — это процесс извлечения **смысловой информации** из объединённых сигналов.

Основные задачи интерпретации:

- распознавание состояний объекта;
- выявление аномалий и отказов;
- прогнозирование поведения системы;
- формирование управляющих воздействий.


Интерпретация часто выполняется с помощью:

- систем нечёткого логики (Fuzzy Logic);
- Байесовских сетей;
- различных нейросетей (MLP, CNN, LSTM);
- экспертных систем.

Практические аспекты реализации:

- калибровка и синхронизация каналов;
- минимизация перекрёстных помех;
- оптимизация фильтров и алгоритмов под микроконтроллеры (DSP, FPGA);
 - реализация цифровых фильтров и усреднителей;
 - использование библиотек машинного обучения (TensorFlow Lite, Edge AI)

Обработка и интерпретация сигналов с нескольких датчиков

Обработка и интерпретация сигналов от нескольких датчиков — ключевой элемент интеллектуальных систем сбора информации. Правильно организованное слияние данных повышает точность, устойчивость и интеллектуальность всей системы, обеспечивая адаптацию к внешним условиям и надёжность диагностики.