

— НАО "Карагандинский технический университет им.Абылкаса Сагинова"

Кафедра АПП им. проф. Бырьки В. Ф.

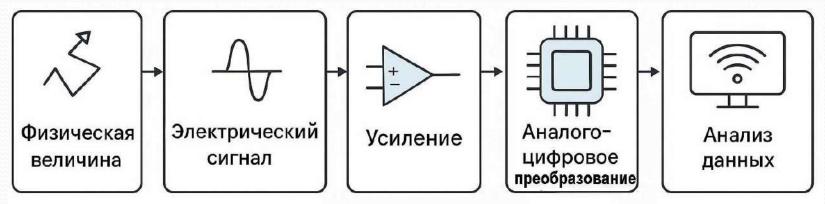
Дисциплина: "Интеллектуальные средства сбора информации"

для студентов образовательной программы 6В07102» – Встроенные цифровые системы управления

Раздел №2 Тема:"Первичные измерительные преобразователи"

Цель: ознакомиться с конструкцией и принципом действия преобразователей.

> Лектор: ст. преп. каф. АПП Лисицын Дмитрий Владимирович


План

- 1. Преобразование физических величин в электрические сигналы
- 2. Измерение температуры
- 3. Измерение давления
- 4. Измерение влажности
- 5. Измерение скорости
- 6. Измерение освещения

Преобразование физических величин

Сенсорика — ключевая часть систем измерения и управления. Основная задача сенсора — преобразование физической величины в электрический сигнал, удобный для дальнейшей обработки микроконтроллером.

Типовая цепочка преобразования:

Измерение температуры

Температура — одна из **основных физических величин**, определяющих состояние вещества.

Сенсор температуры преобразует тепловую энергию в электрический сигнал, который может быть измерен, обработан и использован для управления технологическим процессом.

Все температурные датчики основаны на изменении физических свойств материалов при изменении температуры:

Преобразуемая характеристика	Пример эффекта	Тип датчика	
Электрическое	Сопротивление растёт при	Терморезистор (RTD,	
сопротивление	нагреве	NTC)	
Термо-ЭДС	Возникает напряжение между спаями разных металлов	Термопара	
Излучательная	Изменение интенсивности	Инфракрасный	
способность	ИК-излучения	пирометр	
Частота	Температура влияет на	Кварцевый	
колебаний	упругость кристалла	термодатчик	

Этапы процесса измерения:

1. Измерение (сенсорный уровень)

Сенсор воспринимает температуру объекта.

Происходит физическое преобразование:

 $\Delta T \rightarrow \Delta R$, ΔU , ΔI , $\Delta \lambda$ или Δf

Пример: У терморезистора Pt100 сопротивление изменяется **линейно** от температуры:

$$R(T) = R_0(1+\alpha T)$$
 где R_0 — сопротивление при 0°C (обычно 100 Ω), α — температурный коэффициент ($pprox$ 0.00385 1/°C).

2. Формирование сигнала

- слабый сигнал усиливается (операционный усилитель).
- применяется фильтрация шумов и компенсация внешних влияний.
- в случае термопары используется компенсация холодного спая.

3. Аналого-цифровое преобразование (АЦП)

- сигнал подаётся на **АЦП микроконтроллера** (обычно 10–16 бит).
- результат цифровое значение, пропорциональное температуре.
- далее применяется цифровая калибровка и линейзация.

4. Интеллектуальная обработка

Микроконтроллер или встроенный ИИ-модуль:

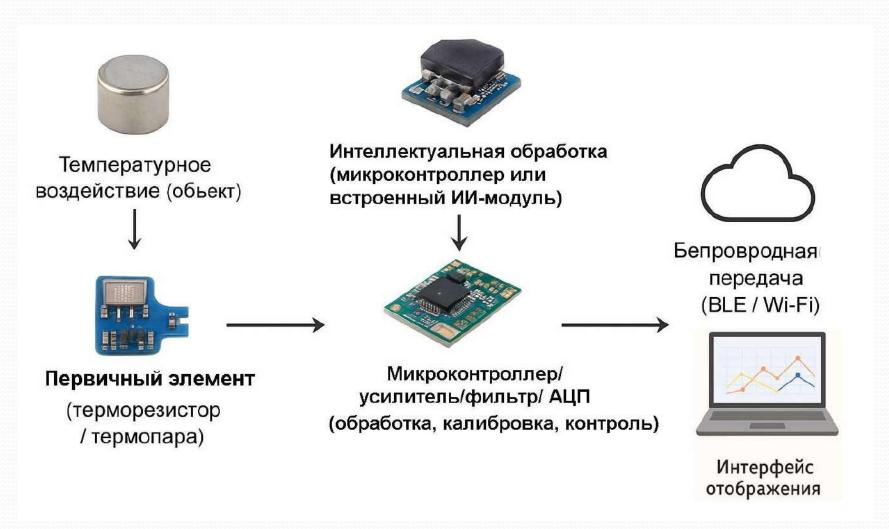
- выполняет **фильтрацию** (например, скользящее среднее или Калман-фильтр),
- корректирует по таблицам калибровки,
- обнаруживает аномалии (обрыв, перегрев, нестабильность),
- предсказывает тренды изменения температуры.

5. Передача данных

- передача по интерфейсам: I²C, SPI, UART, BLE, Wi-Fi, LoRa;
- встраивание данных в общую ІоТ-платформу;
- возможность удалённого мониторинга и управления.

6. Интеллектуализация измерения температуры

Современные интеллектуальные термодатчики включают:

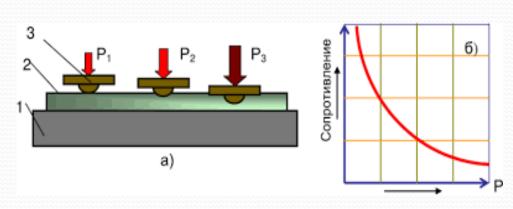

- встроенный микропроцессор,
- самокалибровку и автокоррекцию дрейфа,
- энергоэффективные режимы сна,
- встроенные алгоритмы **диагностики** и **оповещения** (например, перегрев оборудования).

7. Визуализация и управление

На стороне пользователя данные отображаются в виде графиков и таблиц, возможна **обратная связь** — изменение настроек или обновление прошивки сенсорного узла.

Таким образом, интеллектуальный сенсорный узел обеспечивает полный цикл — от измерения температуры до интеллектуального анализа и обмена информацией в системах автоматизированного управления и мониторинга.

Пример измерения температуры в интеллектуальном сенсорном узле


Давление — фундаментальная величина в гидравлике, пневматике, энергетике, химии, медицине и т.д.

Контроль давления важен для безопасности (предотвращение разрыва сосудов), регулирования технологических процессов, обнаружения утечек, мониторинга состояния насосов и компрессоров.

Основная идея измерения давления заключается в механическом воздействии (давление) на первичный преобразователь, вызывающее изменение какого-то электрического параметра, который затем измеряется.

Основные принципы измерения давления:

1. Пьезорезистивный эффект — это изменение электрического сопротивления проводника или полупроводника при его механической деформации. Когда на чувствительный элемент датчика действует давление, и сопротивление встроенных тензорезисторов изменяется

пропорционально величине этой деформации. Изменение сопротивления преобразуется в электрический сигнал, который затем усиливается, фильтруется и преобразуется в цифровую форму.

2. Емкостной принцип. Емкостной датчик давления основан на зависимости электрической ёмкости от расстояния между обкладками конденсатора.

Когда на чувствительный элемент (мембрану) воздействует давление, она **деформируется**, изменяя зазор между обкладками конденсатора. Это вызывает **изменение ёмкости**, которое далее преобразуется в электрический сигнал, пропорциональный давлению.

Формула ёмкости:


 $C = \varepsilon \cdot \frac{A}{d}$

где: *С* — ёмкость,

 ε — диэлектрическая проницаемость среды между обкладками,

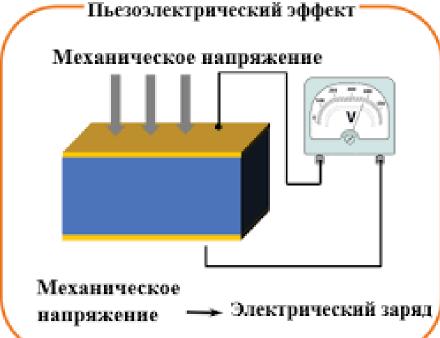
A — площадь перекрытия обкладок,

d — расстояние между ними.

3. Пьезоэлектрический эффект — это явление, при котором при механическом воздействии (сжатии, растяжении, изгибе) на определённые кристаллические материалы в них возникает электрический заряд.

Физическая суть — нарушение симметрии кристаллической решётки, что вызывает разделение центров положительных и отрицательных зарядов → появляется разность потенциалов (напряжение).

Пьезоэлектрический эффект


$$Q = d \cdot F$$

где: Q — электрический заряд,

F — приложенная сила (давление × площадь),

d — пьезоэлектрический коэффициент (Кл/H).

Основные типы материалов: кварц (SiO₂; титанат бария (BaTiO₃); титанат-цирконат свинца Pb[Zr_xTi_{1-x}]O₃; полимеры (типа поливинилиденфторида) применяются в тонкоплёночных сенсорах.

4. Индуктивный эффект основан на изменении индуктивности катушки в результате механического перемещения ферромагнитного элемента под действием давления.

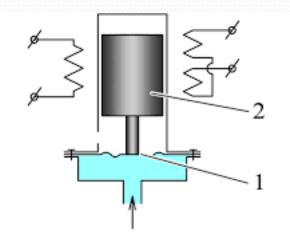
Когда давление деформирует мембрану, связанный с ней магнитопровод (сердечник или якорь) перемещается относительно катушки.

Это вызывает изменение:

- магнитного потока $oldsymbol{\phi}$;
- индуктивности L;
- а следовательно, и электрического сигнала в измерительной цепи. Индуктивность катушки выражается формулой:

$$L = rac{N^2 \cdot \mu \cdot A}{l}$$

где: L — индуктивность катушки,


N — число витков,

 μ — магнитная проницаемость среды,

А — площадь поперечного сечения

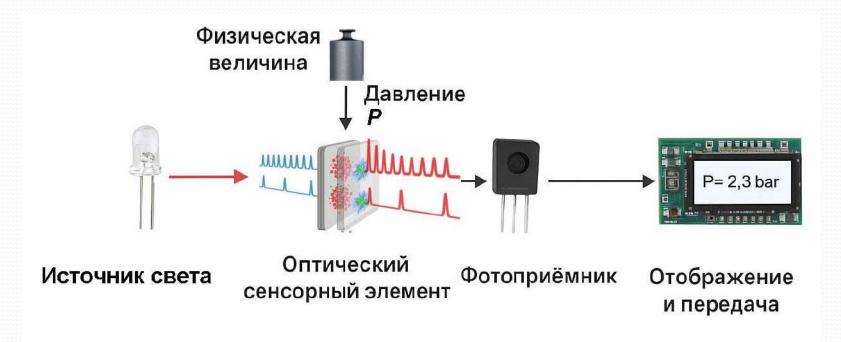
магнитопровода,

I — длина магнитного пути

5. Оптический принцип активно используется в современной сенсорике, особенно там, где требуются высокая точность, электромагнитная помехоустойчивость и возможность удалённого измерения (например, в медицине, нефтегазе и авиации).

Общая идея метода заключается в том, что оптические датчики давления измеряют давление, фиксируя изменения оптических параметров — интенсивности, фазы, длины волны, поляризации или интерференции света — которые возникают под действием деформации чувствительного элемента (обычно мембраны).

Основная особенность:


- свет используется как носитель информации,
- измерение основано на **физических изменениях в оптическом пути** при действии давления.

Когда давление воздействует на **чувствительный элемент (мембрану**, **волокно**, **отражатель)**:

- изменяется его геометрическая форма (изгиб, растяжение),
- меняется оптическая длина пути света,
- или изменяется **показатель преломления материала** (эффект фотоупругости).

В результате — изменяются измеряемые оптические параметры, что позволяет оценить величину давления.

Оптический принцип измерения давления

- 1. Интенсивность или фаза света изменяются в зависимости от давления (изменение давления → изменение светового сигнала)
 - 2. Оптический сигнал → электрический сигнал
 - 3. Электрическая обработка и цифровая интерпретация данных
 - 4. Цифровые данные давления (Р) → отображение / передача в сеть

Основные оптические эффекты для давления

1. Фотоупругий (опто-механический) эффект

Давление вызывает механические напряжения в прозрачном теле \rightarrow изменяется **показатель преломления** n. Изменение n вызывает фазовый сдвиг проходящего света.

Этот эффект используется в **интерферометрических** сенсорах давления.

- 2. **Интерференционный эффект**, давление изменяет расстояние между зеркалами интерферометра → изменяется интерференционная картина.
 - 3. Интенсивностный эффект, самый простой тип.

Свет подаётся на отражающую мембрану, которая изгибается под действием давления. Часть света отражается обратно в оптическое волокно. Изменение зазора между торцом волокна и мембраной — изменение количества отражённого света.

4. **Волоконно-оптический.** Волокно содержит встроенную решётку Брэгга — участок с периодически изменяющимся показателем преломления. При изменении давления волокно деформируется, что изменяет отражаемую длину волны

Принцип	Физическая основа	Преобразуе мая величина	Преимущества	Применение
Пьезорезисти вный	Механическая деформация мембраны → ΔR	Сопротивле ние	Высокая чувствительнос ть, MEMS- технологии	Универсальны е сенсоры
Ёмкостный	Изменение расстояния между обкладками → ΔС	Ёмкость	Высокая точность, малый дрейф	Низкое давление, чистые среды
Пьезоэлектри ческий	Давление → электрический заряд	Напряжение	Быстрый отклик	Динамические измерения
Индуктивный	Сдвиг магнитопровода → ΔL	Индуктивнос ть	Прочность, надёжность	Грубые условия
Оптический	Изменение оптического пути	Интенсивнос ть света	Электробезопас ность	Агрессивные среды, медицина

Влажность — это физическая величина, характеризующая содержание водяного пара в воздухе или газовой среде. Контроль влажности необходим во множестве отраслей:

- сельское хозяйство (контроль микроклимата теплиц, хранения зерна);
- промышленность (технологические процессы, сушильные камеры, фармацевтика);
 - электроника (контроль условий хранения компонентов);
 - биомедицина и экология.

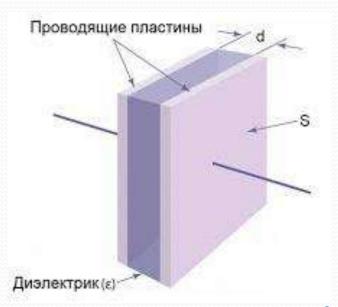
Интеллектуальные средства сбора информации позволяют измерять влажность не просто как физический параметр, а как информационный сигнал, обрабатываемый, калибруемый и передаваемый в цифровом виде. Основные виды влажности следующие:

- **абсолютная влажность** масса водяного пара, содержащегося в 1 м³ воздуха, [г/м³];
- **относительная влажность** отношение текущего парциального давления водяного пара к давлению насыщенного пара при данной температуре (%).
- **дефицит влажности** разность между давлением насыщенного пара и парциальным давлением водяного пара.
- т**очка росы** температура, при которой водяной пар начинает конденсироваться.

Принципы измерения влажности информации влажность является ключевым фактором для:

1. Емкостной принцип - контроля микроклимата (в помещениях, теплицах, лабораториях). Влажность влияет на диэлектрическую проницаемость материала между электродами.

Конструкция: Два параллельных электрода с гигроскопическим диэлектриком (обычно полимер или оксид алюминия).


При изменении содержания влаги изменяется диэлектрическая проницаемость ε, что вызывает изменение емкости конденсатора:

$$C = \frac{\varepsilon \cdot \varepsilon_0 \cdot S}{d}$$

где ε — диэлектрическая проницаемость, зависящая от влажности.

Особенности:

- измеряемая величина **изменение емкости**;
- диапазон: 0–100 %RH;
- высокая стабильность и долговечность.
- Недостатки:
- чувствительность к загрязнению поверхности;
- температурная зависимость (необходима компенсация).

2. Резистивный (кондуктометрический) метод

Суть метода - изменение проводимости гигроскопического материала при изменении влажности. **Конструкция:** Электроды, нанесенные на пористую подложку с гигроскопическим покрытием (например, оксид алюминия, соли лития).

С увеличением влажности увеличивается количество адсорбированной воды, что уменьшает сопротивление.

Преимущества: простота, быстрый отклик.

Недостатки: чувствительность к загрязнениям и температуре.

Типичная зависимость:

$$R = f(RH)$$

Как правило, зависимость нелинейная, часто логарифмическая, корректируется микроконтроллером.

3. Психрометрический метод

Принцип: Используется два термометра — сухой и влажный. Разность температур связана с испарением воды, которое зависит от влажности воздуха. Испарение воды с влажного термометра вызывает охлаждение, и разность температур пропорциональна влажности

воздуха.

Расчет относительной влажности:

$$\phi = f(T_{ ext{cyx}}, T_{ ext{влаж}})$$

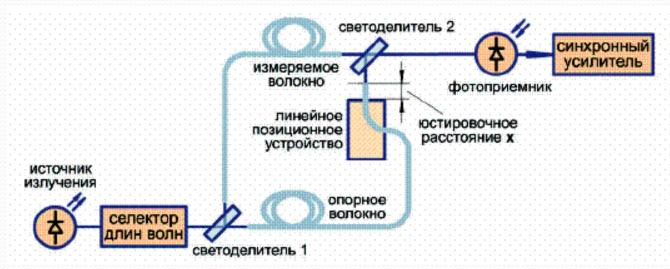
независимость от химических свойств среды. Недостатки: большие габариты, инерционность; требует постоянного смачивания.

		Разн	ость	пока	зани	й тер	момет	ров, °	С
Сухой термометр, °С	1	2	3	4	5	6	7	8	9
		(Этно	сител	ьная	влаж	кності	6, %	
10	88	76	65	54	44	34	24	14	5
12	89	78	68	57	48	38	29	20	11
14	89	79	70	60	51	42	34	25	17
16	90	81	71	62	54	45	37	30	22
18	91	82	73	65	56	49	41	34	27
20	91	83	74	66	59	51	44	37	30
22	92	83	76	68	61	54	47	40	34
24	92	84	77	69	62	56	49	43	37
26	92	85	78	71	64	58	51	46	40
28	92	85	78	71	64	58	51	46	40
28	93	85	78	72	65	59	53	48	42
30	93	86	79	73	67	61	55	50	44

4. Оптические методы

Принцип: Измерение **поглощения инфракрасного излучения** молекулами воды на определённых длинах волн.

Типы:


- спектроскопические методы;
- интерференционные сенсоры (на основе волоконной оптики).

Преимущества:

- бесконтактность;
- высокая точность;
- применимы в агрессивных средах.

Недостатки:

- высокая стоимость;
- сложность калибровки.

Структурная схема интерференционного метода измерения хроматической дисперсии

Примеры реализации цифровых и интеллектуальных сенсоров влажности влажности

Этапы измерения влажности в интеллектуальном сенсорном узле

Модель	Тип	Диапазон	Точность	Фото
SHT3x / SHT4x (Sensirion)	Емкостной	0–100 %RH	±1.5 %RH	SILLY
DHT22 / AM2302	Емкостной	0–100 %RH	±2–5 %RH	
HIH-6130 (Honeywell)	Емкостной	0–100 %RH	±1.8 %RH	
HDC2080 (TI)	Емкостной	0–100 %RH	±1.5 %RH	

Таким образом, **интеллектуальные системы измерения влажности** обеспечивают:

- надежное измерение;
- автоматическую калибровку;
- цифровую обработку сигнала;
- устойчивость к помехам и температуре;
- интеграцию с ІоТ-системами и облачными сервисами.

Технологии непрерывно развиваются — появляются миниатюрные сенсоры с низким энергопотреблением, самодиагностикой и встроенными нейроалгоритмами для прогнозирования и коррекции погрешностей.

Измерение скорости

Измерение скорости является также одной из ключевых задач в автоматизированных системах управления, робототехнике, транспортных и технологических комплексах.

Интеллектуальные сенсорные узлы позволяют не только фиксировать скорость движения или потока, но и осуществлять анализ, диагностику и передачу данных в цифровом виде.

 Скорость (υ)
 — физическая величина, характеризующая

 быстроту изменения координаты тела во времени.

 Формула:
 ds

 $v = \frac{ds}{dt}$

где s — путь, t — время.

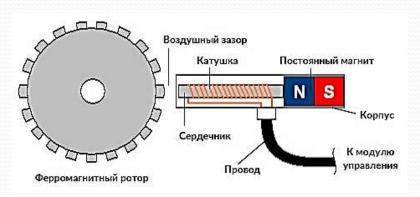
Измерение скорости сводится к регистрации либо **перемещения за единицу времени**, либо **частоты сигнала**, пропорциональной скорости.

Классификация методов измерения скорости

Метод	Принцип	Применение
Механический	Измерение угловой частоты вращения вала	Валы, редукторы, двигатели
Электромагнитный (индукционный)	Наведение ЭДС при вращении в магнитном поле	Тахогенераторы, турбины
Оптический	Прерывистое отражение или излучение света	Лазерные и фотоэлектрические датчики
Ультразвуковой / Доплеровский	Сдвиг частоты отражённой волны	Потоки жидкостей, транспорт
Корреляционный (временной)	Сравнение временных интервалов между сигналами	Потоки газа, воды, воздуха
GPS / инерциальный	Изменение координат или ускорения	Навигационные системы

Основные типы сенсоров для измерения скорости

1. Механические датчики основаны на измерении *частоты* вращения механических элементов.


Примеры: тахометры с турбинкой, крыльчаткой, шестерёнкой.

Недостатки: ограниченная точность из-за загрязнения, чувствительность к вибрации и температуре, низкая долговечность из-за механического износа, невозможность работы в широком динамическом диапазоне, подверженность поломкам таким как обрыв или заклинивание

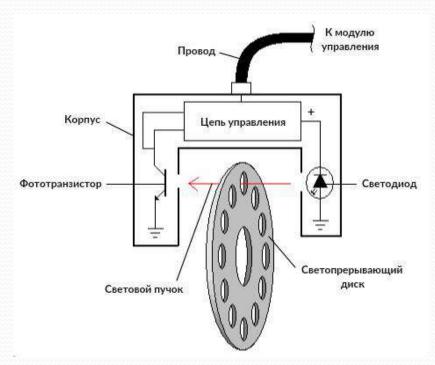
2. **Индукционные датчики** используют принцип **электромагнитной индукции**: при вращении металлического диска в магнитном поле создаётся ЭДС, пропорциональная скорости.

Применяются в автомобильных системах (ABS), турбомашинах. Выходной сигнал — аналоговое напряжение переменного тока.

Электромагнитная индукция:

явление возникновения электрического тока в проводнике при изменении магнитного потока, пронизывающего контур.

Основные типы сенсоров для измерения скорости


3. Оптические датчики скорости измеряют скорость движения объекта или скорость потока (жидкости/газа/частиц) с помощью оптических принципов: регистрации изменений интенсивности/фазы/времени распространения/частоты света. В интеллектуальных сенсорных узлах такие датчики комбинируются с АЦП, микроконтроллерами / DSP и алгоритмами (фильтрация, детекция, машинное обучение) для повышения надёжности, автокалибровки и интеграции в сети (IoT, SCADA).

Самый простой из них это оптические энкодеры или фотоэлектрические датчики — они считают импульсы (пульсы/щели) и переводят частоту импульсов f в линейную или угловую скорость:

 $v = \frac{f \cdot p}{N}$

где *p* — шаг (мм) между метками / диаметр/периметр диска; *N* — число импульсов на оборот для угловой скорости.

Пример оптических датчиков скорости



Оптоэлектронные датчики скорости весьма просты.

Работает датчик за счет оптопары, представляющей собой фототранзистор и светодиод, разделенные диском с прорезями. Последний закреплен на приводном валу. За счет вращения диска и прерывания светового потока между парой элементов и генерируется импульсный сигнал.

Внешний вид энкодера

Ультразвуковые (Доплеровские) датчики измерения скорости

4. Ультразвуковой доплеровский датчик скорости измеряет скорость движения объектов или сред (например, жидкостей, газов, частиц) на основе эффекта Доплера для звуковых волн.

Эффект Доплера — это изменение частоты сигнала, отражённого от движущегося объекта:

- если объект **приближается** частота отражённого сигнала увеличивается;
 - если объект **удаляется** частота **уменьшается**.

Разность между излучённой частотой f_0 и принятой частотой f_r пропорциональна **скорости объекта** υ и определяется по формуле:

$$v = \frac{f_D c}{2f_0 \cos(\theta)}$$

где: f_D — частота Доплера (изменение частоты),

υ — скорость объекта,

— угол между направлением,

CS-4500 ультразвуковой датчик скорости

c — скорость распространения звука в среде (примерно 343 м/с в воздухе, 1500 м/с в воде).

Основные функциональные элементы ультразвукового датчика скорости

1. Ультразвуковой излучатель (пьезоэлектрический)

генерирует акустические колебания высокой частоты (обычно 1–10 МГц для жидкостей, 40–200 кГц для воздуха);

2. Отражающая поверхность или поток частиц

движущийся объект, от которого отражается звуковая волна (например, частицы в потоке жидкости).

3. Приёмник ультразвука

может быть отдельным элементом или использоваться тот же пьезоэлемент (в режиме приём/передача), регистрирует отражённый сигнал, несущий информацию о частоте сдвига.

4. Система обработки сигналов

выделяет доплеровскую составляющую f_D , применяет усиление, фильтрацию, смеситель (детектор) и частотный анализ (FFT);

преобразует частоту в значение скорости по формуле.

5. Микроконтроллер / цифровой процессор

выполняет вычисления, усреднение, компенсацию угла и температуры; формирует выходной сигнал (аналоговый, цифровой, или через интерфейс — UART, CAN, Modbus, BLE и т.п.).

Измерение освещённости

Освещённость — это фотометрическая величина, характеризующая количество светового потока, падающего на единицу площади. Обозначается *E*, измеряется в **люксах (лк)**:

$$E = \frac{\Phi}{S}$$

где: Ф — световой поток, лм (люмен),

S— освещаемая площадь, м².

Освещённость — один из важнейших параметров, контролируемых в:

- системах «умного дома» и «умного города»;
- сельском хозяйстве (освещение теплиц, фоторегуляция роста растений);
- производстве (контроль освещения рабочих мест);
- системах энергосбережения и адаптивного управления освещением;
- робототехнике, мониторинге окружающей среды, беспилотных платформах.

Основные физические принципы измерения освещённости

Современные **сенсоры освещённости** основаны на **фотометрических** и **фотонных** эффектах, при которых падающее излучение вызывает изменение электрических параметров чувствительного элемента.

1. Фотоэлектрический эффект

При поглощении света полупроводником фотоны выбивают электроны, вызывая:

- фотоэлектрический ток (внешний эффект);
- изменение проводимости (внутренний эффект).

2. Фотопроводимость

Интенсивность света \rightarrow увеличение числа носителей заряда \rightarrow снижение сопротивления материала. Используется в фоторезисторах (LDR) — CdS, CdSe, PbS и др.

3. Фотовольтаический эффект

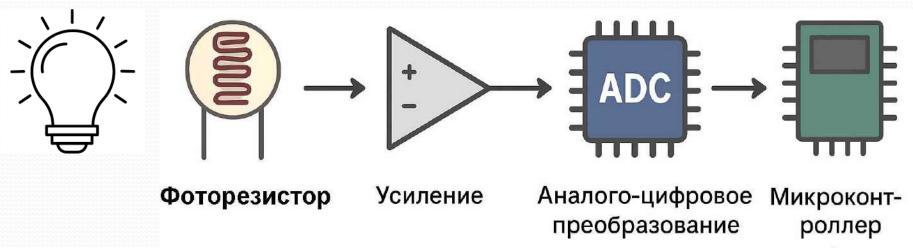
Свет → генерация ЭДС на p-n переходе. Используется в фотодиодах и фототранзисторах.

4. Фотоэлектронная эмиссия

Используется в специализированных приборах (фотокатоды, фотоумножители), но реже — в интеллектуальных сенсорных системах. 32

Типы датчиков освещённости

Тип сенсора	Принцип действия	Диапазон измерений	Особенности
Фоторезистор (LDR)	Сопротивление зависит от интенсивности света	1–100 000 лк	Прост, дешёв, медленный отклик
Фотодиод	Свет → ток на p-n переходе	0.01–100 000 лк	Быстрый отклик, высокая точность
Фототранзистор	Усиленный фотодиод	0.1–50 000 лк	Чувствительный, нелинейный отклик
Пирометрический сенсор	Преобразует ИК- излучение в электрический сигнал		Используется в термовизорах, не для видимого света
Цифровой датчик освещённости (ALS)	Интегрированный фотодиод + АЦП + интерфейс	0.01–100 000 лк	Цифровой выход, встроенная компенсация спектра


Принцип работы фотоэлектрических датчиков

Базовая цепочка преобразования:

Освещённость → Фотоэлемент → Электрический сигнал → Усиление → АЦП → Обработка → Передача данных

- **1. Фотоэлемент** (фотодиод, LDR) преобразует поток света в ток или изменение сопротивления.
- **2. Усилитель** преобразует слабый сигнал в измеряемый диапазон.
- **3. Аналого-цифровое преобразование (АЦП)** формирует цифровой код.
- **4. Микроконтроллер** выполняет коррекцию спектра, линейности и температуры.
- **5. Коммуникационный интерфейс (I²C, SPI, UART)** передаёт данные в систему.

Этапы измерения освещённости (в интеллектуальном сенсорном узле)

Преимущества интеллектуальных систем измерения освещённости

- Автоматическая компенсация температуры и спектра
- Цифровая обработка и фильтрация шумов
- Миниатюрные размеры и низкое энергопотребление
- Возможность интеграции в распределённые сети ІоТ
- Высокая стабильность и долговечность
- Простая калибровка и удалённая диагностика

