CPCII № 7

Вредные вещества энергетического производства

За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80...85% в производстве электроэнергии. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии (52%).

Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они вместе с транспортом поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% диоксида серы, 35% оксидов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2...4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности.

В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа - 400 млн. доз, магния - 1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем.

Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых

энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф (таблица 7.1).

Таблица 7.1 – Загрязнение атмосферы выбросами теплоэлектростанций

Выброс,	Вид топлива				
г на 1 кВт ч	каменный	бурый	мазут	природный газ	
	уголь	уголь			
SO_2	6	7,7	7,4	0,002	
NO_x	21	3,4	2,4	1,9	
Твердые частицы	1,4	2,7	0,7	-	
Фтористые	0,05	1,11	0,004	-	
соединения					

Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензо(а)пирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также оксиды кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз, которым раньше болели шахтеры. Сейчас случаи заболевания силикозом регистрируются у детей, проживающих вблизи угольных ТЭС. Серьезную проблему вблизи ТЭС представляет складирование золы и шлаков. Для этого требуются значительные территории, которые долгое время не используются, а также являются очагами накопления тяжелых металлов и повышенной радиоактивности.

Имеются данные, что если бы вся сегодняшняя энергетика базировалась на угле, то выбросы СО2 составляли бы 20 млрд. тонн в год (сейчас они близки к 6 млрд. т/год). Это тот предел, за которым прогнозируются такие изменения климата, которые обусловят катастрофические последствия для биосферы.

Атомная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большим запасами ядерного топлива, так и с щадящим воздействием на окружающую среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько энергии, сколько сжигание 1000 тонн каменного угля.

До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Стоимость таких ликвидационных работ оставляет от 1/6 до 1/3 от стоимости самих АЭС.

При нормальной работе АЭС выбросы радиоактивных элементов в среду крайне незначительны. В среднем они в 2...4 раза меньше, чем от ТЭС одинаковой мощности. Некоторые параметры воздействия АЭС и ТЭС на среду представлены в таблице 7.2.

Таблица 7.2 - Сравнение АЭС и ТЭС по расходу топлива и воздействию на среду. Мощность электростанций по 1000 мВт, работа в течение года

Факторы воздействия на среду	ТЭС	АЭС
Топливо	3,5 млн. т угля	1,5 т. урана или 1000 т урановой руды
Отходы:		
углекислый газ;	10 млн. т	-
сернистый ангидрид и	400 тыс. т	-
другие соединения;		
зола;	100 тыс.т	_

Факторы воздействия на среду	ТЭС	АЭС
радиоактивные.	-	2т