Лекция 5

Осадочные горные породы. Текстура и структура осадочных пород.

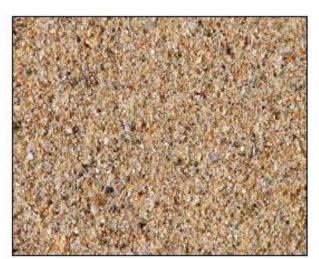
ПЕТРОГРАФИЯ

СТ. ПРЕПОДАВАТЕЛЬ КАФЕДРЫ ГРМПИ

ЛИ ЕЛЕНА СЕРГЕЕВНА

Классификация осадочных пород

- В основу классификации осадочных пород положено подразделение по происхождению:
- Обломочные (терригенные, кластогенные) образовавшиеся из скопления обломков других пород;
- 2. **Хемогенные** возникшие в результате выпадения осадков из воды или из других растворив;
- 3. Органогенные произошедшие из скоплении остатков животных и растений.


Обломочные горные породы

Классификация обломочных пород

- 1. По размерам обломков;
- 2. По форме обломков (окатанные, не окатанные);
- 3. По наличию и структуре цемента.

ПЕСОК


2-0,1_{MM}

ГРАВИЙ

2-10 mm

ГАЛЬКА

ВАЛУНЫ

> 100 MM

10-100 MM

ПЕСОК

2-0,1_{MM}

ГЛЫБЫ

ЩЕБЕНЬ

10-100 MM

> 100 MM

ПЕСОК

2-0,1_{MM}

АЛЕВРИТ

0,1-0,01 MM

ГЛИНА

< 0.01 MM

Активация Чтобы активир

КОНГЛОМЕРАТ

ПЕСЧАНИК

БРЕКЧИЯ

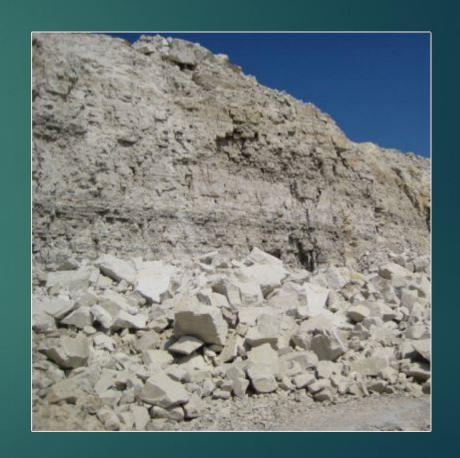
АЛЕВРОЛИТ

АРГИЛЛИТ

Раз-		Рыхлые		Сцементированные		
мер облом- ков,	Структура породы	Остро- уголь- ные	Окатанные обломки	Остро- угольные	Окатанные обломки	
MM		Название породы				
Более 1000	Псефитовая (грубообломочная)	Неокат. глыба	Глыбы	Брекчия	Конгломерат	
100- 1000		Отлом	Валуны			
10-100		Щебень	Галька (Галечник)			
2-10		Дресва	Гравий	Дресвяная брекчия	Гравелит	
0,1-2	Псаммитовая (среднеобломочные)	Песок		Песчаник		
0,01- 0,1	Алевролитовые (мелкообломочные)	Алеврит		Алевролит (шеро-ховатый на ощупь)		
Менее 0,01	Пелитовые (тонко- обломочные)	Глина		Аргиллит		

Химические осадочные (хемогенные) горные породы

- Химические осадочные породы образовались в результате выпадения солей из водных растворов или в результате различных химических реакций в земной коре.
- По химическому составу среди этих пород принято выделять карбонатные, галоидные, сульфатные, кремнистые, железистые и фосфатные.


Карбонатные породы

Известняки

- ▶ Известняки химического происхождения не менее чем органогенные состоят из кальцита выпавшего из воды. Известняки химического происхождения встречаются часто, но их трудно отличить от других разновидностей, особенно после перекристаллизации. Структура кристаллически-зернистая, текстура массивная, слоистая. Окраска различная, часто белая, с примесями желтоватая, серая различных оттенков. Бурно вскипают с HCI.
- ▶ Типичными представителями известняков химического происхождения являются известковые туфы (травертины), образующиеся на суше в результате выпадения извести из вод некоторых источников. Они обычно светло-серого цвета, пористого строения.

Известняки

По условиям образования различают пресноводные известняки, залегающие среди континентальных песчаноглинистых отложений, известняки солоноватых бассейнов и морские известняки. Они широко применяются в строительстве, при производстве вяжущих материалов, в металлургии, в полиграфическом производстве, в сельском хозяйстве.

Доломиты

▶ Доломиты. К доломитам относятся карбонатные осадочные породы, состоящие не менее чем на 90% из минерала доломита. Для доломитов характерна примесь минералов (кальцит, гипс, флюорит, магнезит, окислы железа, кремнезем и др.), выпавших из раствора при образовании осадка или в процессе диагенеза. Окраска доломитов светлая с сероватыми, желтоватыми, красноватыми и зеленоватыми оттенками. Структура кристаллически-зернистая, текстура массивная иногда пористая. Доломиты тверже известняка. твердость 3,5-4, блеск стеклянный. Не вскипают бурно с HCl, а только в порошке.

Доломиты

Добываются на Урале, Кавказе и в Забайкалье. Применяются при производстве цементов, в стекольной и керамической промышленности, при изготовлении огнеупорных изделий, в качестве флюса в черной металлургии, для получения магния и для изготовления бута, щебня и облицовочного камня.

Мергель

- К мергелям относятся осадочные горные породы, переходные от известняков и доломитов к глинистым породам. Они содержат от 30 до 50 % глинистых частиц. Цвет серый, белый, коричневато-желтый. Текстура часто слоистая, иногда массивная, структура тонкозернистая. Вскипает под действием НСІ, если на него подышать, то пахнет глиной.
- Используются мергели как цементное сырье, для некоторых разностей требуется лишь обжиг и последующий размол.

Галоидные породы

 Галоидные породы представляют собой типичные химические осадки. Выпадение их из растворов происходит в замкнутых водных бассейнах, мелководных заливах и соляных лагунах вследствие интенсивного испарения. К ним относятся каменная соль, карналлит, сильвинит и др.

Каменная соль

▶ Каменная соль или галит (NaCl). Осадочные пласты каменной соли достигают мощности 10-15 м. Добывается каменная соль в Соликамске, Оренбурге и на Донбассе. В сложных соленых толщах нижние горизонты сложены ангидритовой породой, выше следует горизонт каменной соли, а зона калийных и калийно-магниевых солей располагается в верхних частях разреза, иногда перекрываясь каменной солью. Описание каменной соли (галита) дано в лабораторной работе 2 (галоиды).

Карналлит

► **Карналлит** (MgCl₂ KCl 6H₂O). Откладывается в верхних частях соляных отложений. Хлористые соли калия и магния начинают выпадать при солености воды 32 – 35 ‰ и более. Используется в сельском хозяйстве и химической промышленности. Описание дано в лабораторной работе 2 (галоиды).

Сильвинит

Сильвинит (КСІ). Также откладывается в верхних частях соляных залежей. Применяется как удобрение и в химической промышленности.

Сульфатные породы

 Эти породы образуют характерную группу химических осадочных пород, состоящих из сульфатных соединений натрия и кальция. К числу наиболее распространенных пород этого типа относятся гипсы ангидриты и мирабилиты. ► Гипс (CaSO₄□2H₂O) и ангидрит (CaSO₄). Эти породы откладываются в нижних горизонтах соляных залежей. Гипс и ангидрит начинают выпадать при солености воды 13 – 15‰, залежи образуют пласты до 100 и более метров. Используются в строительстве, химической, бумажной промышленности, в медицине и в сельском хозяйстве.

Ангидрит

 Ангидрит- минерал класса сульфатов, безводный сульфат кальция. При добавлении воды увеличивается в объёме примерно на 60 % и постепенно превращается в гипс. Отложения ангидрита образуются в осадочных толщах главным образом в результате обезвоживания отложений гипса. Ангидрит иногда используется как дешёвый декоративно-поделочный камень, по твёрдости занимающий промежуточное положение между яшмой, нефритом и агатом, с одной стороны, и мягким селенитом и кальцитом — с другой. Ангидрит может быть белым, голубоватым, сероватым, реже красноватым.

Гипс

- ▶ Гипс минерал из класса сульфатов, по составу гидрат сульфата кальция (CaSO4·2H2O). Волокнистая разновидность гипса называется селенитом, а зернистая — алебастром.
- ▶ Гипс типичный осадочный минерал. Встречается в пластах осадочных пород в форме чешуйчатых, волокнистых или плотных мелкозернистых масс, бесцветных или белых кристаллов, иногда окрашенных захваченными ими при росте включениями и примесями в бурые, голубые, жёлтые или красные тона.

Мирабилит

Мирабилит (Na₂SO₄□10H₂O) – глауберова соль. Образуется в заливе Кара-Богаз-Гол Каспийского моря. Выпадает в зимнее время из воды при температуре ниже - 33°C. Образует пластовые залежи в верхних частях разреза. Используется в медицине, стекольном производстве и для изготовления соды. Описание дано в лабораторной работе 2 (сульфаты).

Кремнистые породы

К кремнистым породам химического происхождения относятся гейзериты, кремнистые туфы (сланцы) холодных вод, яшмы и др. Яшмы и кремнистые сланцы обычно обладают скрытокристаллической или гелевой структурой. Текстуры бывают массивные и слоистые.

Яшмы

▶ Яшмы – твердые, непрозрачные породы с раковистым изломом, состоящие из кремнезема (кварц, халцедон). Порода пестрая, полосчатая или пятнистая, окрашенная окислами марганца и железа в красный, желтый, коричневый и зеленый цвета. Используются как прекрасный поделочный материал. Описание дано в лабораторной работе 3 (оксиды).

Фосфоритные породы

Фосфоритные породы

 Фосфоритные породы представляют собой различные осадочные горные породы (песчаники, глины, мергели), обогащенные фосфатами кальция. содержание P_2O_5 в фосфоритах составляет 12 – 40%. В качестве примесей в фосфоритах встречаются примеси кварца, кальцита, глауконита, остатки радиолярий, диатомий и др. Фосфориты образуются в морях, озерах и болотах. Морские пластовые и желваковые фосфориты выпадают в виде химического осадка на глубинах от 50 до 150 м и образуют залежи мощностью до 10 15 м (пластовые фосфориты хребта Каратау, Брянские) желваковые фосфориты). Используются фосфориты для получения фосфорных удобрений. Полная характеристика дана в лабораторной работе 3 (фосфаты).

ИЗВЕСТНЯК - CaCO₃

ДОЛОМИТ - $CaMg(CO_3)_2$

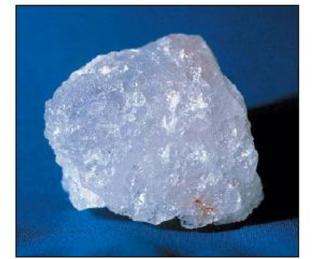
известковый туф (травертин)

КРЕМНЕВАЯ конкреция

КРЕМНЕВЫЙ ТУФ

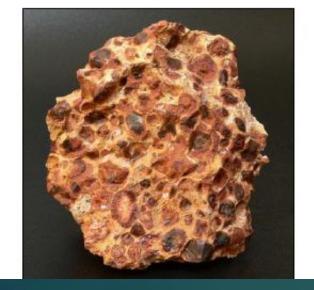
(гейзерит $SiO_2*nH_2O)$

АНГИДРИТ CaSO₄



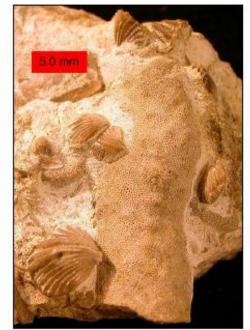
ΓИПС CaSO₄*2H₂O

KAMEHHAЯ СОЛЬ NaCl


БУРЫЙ ЖЕЛЕЗНЯК

СИДЕРИТ

БОКСИТ



ФОСФОРИТ

Структуры хемогенных пород подразделяются по величине зерен на

- ▶ крупнокристаллические (более 1,0 мм),
- ▶ среднекристаллические (1,0-0,1 мм),
- скрытокристаллические (0,1-0,01 мм),
- ▶ пелитоморфные (менее 0,01 мм).

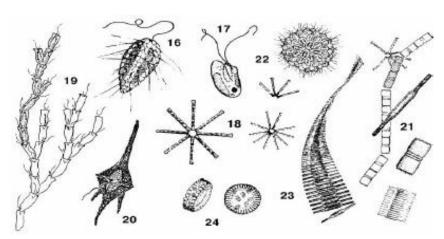
Структуры органогенных пород называются **биоморфными**, если они сложены из хорошо сохранившихся организмов и **детритовыми**, если представлены их обломками.

Органогенные осадочные породы

ИЗВЕСТНЯК

ракушечник коралловый брахиоподовый и пр.

писчий мел


Органогенные осадочные породы

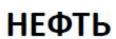
ДИАТОМИТ

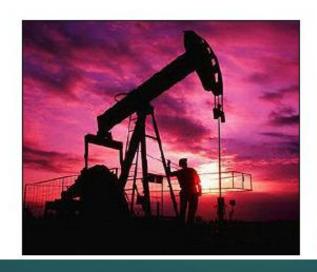
ТРЕПЕЛ

ТОРФ

Каустобиолиты

ИСКОПАЕМЫЕ УГЛИ




Каустобиолиты

ГОРЮЧИЕ СЛАНЦЫ

