Лабораторная работа №3

Определение акустической и упругой силы горных пород с помощью ультразвука

План:

- 1.Основные задачи
- 2. Порядок выполнения работы
- 3. Задания
- 4.Блиц тест
- 5.Глоссарий

Цель: Целью работы является определение модуля движения различных горных пород, скорости блуждающих волн, внутреннее препятсвие волн и модуль Юнга.

Задание: Определение с помощью акустических методов в промышленном центре условия массивности горных пород.

Приборы и реактивы: Прибор ультрозвука для определения скорости упругих волн, образцы горных пород, аналитические весы.

Методическое указание

Упругие колебания — это процесс распространения в породе знакопеременных упругих деформаций ее частиц. Упругие колебания можно представить как периодическое отклонение материальной частицы или группы частиц от положения равновесия.

Число колебаний в 1 сек называется частотой и имеет размерность Гц.

Упругие волны по частоте колебаний подразделяются:

 $f = до 20 \Gamma ц - инфразвуковые;$

 $f = 20 - 20000 \ \Gamma$ ц – звуковые;

 $f > 20000 \Gamma_{\text{Ц}} -$ ультразвуковые;

 $f > 10^{10} \ \Gamma$ ц – гиперзвуковые.

Так как упругие волны представляют собой распространение в веществе деформаций, то в зависимости от их вида выделяют волны различных типов.

Деформации попеременного объемного сжатия и растяжения, обуславливают распространение в веществе **продольных упругих колебаний**. Продольные волны распространяются в любой среде – в газах, жидкостях, твердых телах, так как все вещества обладают сопротивлением объемному сжатию. Именно продольные волны вызывают звуковые явления.

Распространение попеременных деформаций сдвига в среде вызывает **поперечные упругие колебания.** Они присущи только твердым телам, так как в жидкостях и газах сопротивление сдвигу отсутствует.

Эти два типа волн распространяются по всему объему породы и называются объемными.

Есть также плоские поверхностные волны. Они присущи только твердым телам.

Характер распространения упругих колебаний в горных породах определяется их акустическими параметрами. К ним относятся — скорость распространения упругих волн, коэффициенты поглощения и волнового сопротивления. Породы также характеризуются различными коэффициентами отражения и преломления упругих волн.

Скорость упругой волны в тонком стержне:
$$v_{er} = \sqrt{\frac{E}{\rho}}$$
;

Скорость продольной волны в массиве:
$$v_p = \sqrt{\frac{E}{\rho} \frac{(1-\nu)}{(1+\nu)(1-2\nu\nu)}}$$
,

при
$$\nu = 0.25$$
 $v_p = \sqrt{\frac{E}{\rho}}$.

Скорость поперечной волны в тонком стержне: $v_{cs} = \sqrt{\frac{G}{\rho}} = \sqrt{\frac{E}{2\rho}\frac{1+\nu}{(1+\nu)}}$;

при
$$\nu = 0.25 \ v_p = 0.63 \sqrt{\frac{E}{\rho}}$$
 .

Скорость поверхностной волны: $v_L = \frac{0.87 + 1.12\nu}{1 + \nu} \sqrt{\frac{G}{\rho}}$;

при
$$v = 0.25 \ v_L = 0.92 v_S = 0.58 \sqrt{\frac{E}{\rho}} \ .$$
 $v_P > v_S > v_L$

Скорость распространения упругих волн в горных породах определяется их упругими свойствами и плотностью.

Распространение упругих волн в горных породах, также как и в любой среде сопровождается постепенным снижением их интенсивности по мере удаления от источника излучения по следующим причинам:

- а) частичным поглощением энергии волны породой и превращением ее в тепловую;
- б) рассеиванием акустической энергии породой на неоднородностях (порах, трещинах и т.п.).

В расчетах часто используется произведение плотности породы на скорость упругой волны в ней называемым удельным волновым сопротивлением:

$$Z = \rho v$$

Оно определяет способность горных пород отражать и преломлять упругие волны. Отражение и преломление последних происходит либо на границе между горными породами, обладающими различными акустическими свойствами, либо при переходе упругих волн из внешней среды в породу, и наоборот.

Скорость продольных волн возрастает в ростом E, v. При изменении v от 0.1 до 0.4 v_P изменяется на 45%. Скорость поперечных волн возрастает с ростом E, но уменьшается с ростом v. У малопористых пород скорости максимальны.

Основная область использования акустических свойств горных пород — получение информации о состоянии и свойствах горных пород и массивов. При этом большое значение имеют законы распространения и поглощения упругих колебаний.

Коэффициент отражения – отношение энергии отраженной волны к энергии, падающей волны:

$$K_o = A_o/A_{\Pi}$$

При этом углы падения $\delta_{\rm II}$ и отражения $\delta_{\rm O}$ звуковой волны от границы раздела равны. Чем больше разница в волновых сопротивлениях сред, тем больше энергии отражается. При переходе из среды с малым волновым сопротивлением в среду с большим волновым сопротивлением основная часть звуковой энергии отражается.

Воздух – вода – 99.8% энергии отражается.

Воздух – порода – 85% энергии волны отражается.

Отношение энергии волны прошедшей через границу двух сред к энергии падающей волны $A_{np}/$ A_{n} называется коэффициентом преломления упругой волны относительно первой среды.

Порядок выполнения работы

• Все размеры образца измеряем с точностью до 1 мми рассчитываем его объем по следующей формуле:

$$V = a \cdot b \cdot c \tag{1}$$

• Взвешивая массу образца горных пород с точностью до 1 г на аналитических весах, объемную массу определяем по следующей формуле:

$$\gamma = \frac{\mathsf{P}}{\mathsf{V}}, \, \mathsf{K} \mathsf{\Gamma} / \mathsf{M}^3. \tag{2}$$

• Определяется плотность горных пород:

$$\rho = \frac{\gamma}{\mathsf{q}}, \, \mathsf{K}\Gamma/\mathsf{M}^3. \tag{3}$$

где g –ускорение силы тяжести (m/c^2) .

• Скорость блуждающих волн определяем следующей формулой:

$$C_{p} = \frac{d}{t}, M/c.$$
 (4)

где d – длина образца (м); t – время распространения ультразвуков в образце (сек).

• По следующей формуле определяется модуль Юнга:

$$C_{P} = \sqrt{\frac{E}{\rho} \frac{1 - \mu}{(1 + \mu)(1 - 2\mu)}}, M/c.$$
 (5)

где Е — Юнг модулі (H/м²); (ρ - плотность горных пород (кг/м³); μ - коэффициент Пуассона. коэффициент Пуассона (μ = 0,25).

• Движение модуля определяем следующей формулой:

$$G = \frac{E}{2(1+\mu)} H/M^2.$$
 (6)

- В следующей очереди определяется внутреннее препятствие волн.
- Результаты расчеты заносятся в таблицу.

Акустические и упругие силы горных пород

Таблица 1

Наименование горной породы	06	Разм бразца,	леры , м	Объем, V, м³	Macca, P, H	Плотность, кг/м³	Время, t, сек	Коэффициент Пуассона	СР, м/с	$E, H/M^2$	$G, H/M^2$	$z, H/M^2c$

Контрольные вопросы.

- 1. Именно какие волны вызывают звуковые явления?
- 2. Дайте определение модуля Юнга.
- 3. Дайте определение коэффициента Пуассона.
- 4. Продольные и поперечные волны распространяются по всему объему породы и поэтому их называют?
- 5. Какие волны распространяются в любой среде в газах, жидкостях, твердых телах, так как все вещества обладают сопротивлением объемному сжатию?

Блиц-тест.

1		\mathbf{r}	U		_		_		
		н.	TOTTOTI	CHATA	ΠΩΙΙΩΩΠΙ ΙΙΙ	OU CICONO	ACTI ATI	VITITATATITIV	ропи.
		1)	какии	CDC/IC	наисслына	131 CKUI N	лоть ол	уждающих	волн.
_	•	_	110011011			• p .		J 222, A 2022 C 224, 222.	

- а. в воде
- b. в ртутье
- с. в воздухе
- d. в газе
- е. в пространстве

 Единица измерения движения модули в международной С. 	

- a. $\kappa\Gamma/M^2$
- b. кг/м
- c. H/M^2
- d. м
- е. кг
- 3. Какие волны на ровной поверхности земли вызввают звуковые волны:
 - а. блуждающие
 - b. горизонтальные
 - с. движущие(движения)
 - d. вертикальные
 - е. без изменение
- 4. Упругие волны по частоте колебаний подразделяются:
 - a. 5

- b. 4
- c. 2
- d. 3
- e. 1
- 5. Как изменяется скорость распространения упругости волн в зависимости от усложнения коэффициента Пуассона:
 - а. увеличивается
 - b. уменьшается
 - с. не меняется
 - d. остается
 - е. нет ответа
- 6. Назовите диапазон гиперзвуков волн (Гц):
 - a. 10^8
 - b. 10^9
 - c. 10^7
 - d. 10^6
 - e. 10^5

Глоссарий:

Деформация — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга.

Модуль Юнга (модуль продольной упругости) — физическая величина, характеризующая свойства материала сопротивляться растяжению /сжатию при упругой деформации.

Коэффициент Пуассона — величина отношения относительно поперечного сжатия к относительному продольному растяжению.

Вывод

После выполнения работы необходимо вывести выводы: какими были выводы в промышленном центре условия массивности горных пород и скорости упругих волн определенные с помощью прибора ультразвука.